Future Experiments on CP Violation

Christian Kiesling
Max-Planck-Institute for Physics, Munich

- Physics Motivation
- LHCb Upgrade
- A new generation of B-Factories: SuperB and SuperKEKB
- Conclusions
New Physics at the Loop Level

"penguins"

SM

NP

Rare Decays of B mesons:

\[
B \rightarrow X_{s,d} \gamma \quad \mathcal{O}(10^{-4})
\]

\[
B \rightarrow X_{s,d} l^+ l^- \quad \mathcal{O}(10^{-6})
\]

\[
B \rightarrow X_d \nu \bar{\nu} \quad \mathcal{O}(10^{-6})
\]

\[
B_s \rightarrow l^+ l^- \quad \mathcal{O}(10^{-9})
\]

NP in CPV asymmetries:

\[
B \rightarrow J/\psi K_S \quad \leftarrow B \rightarrow \phi K_S
\]

Principle:

Deviation of observable from the SM prediction signals NP

virtual particles in the loop reveal their existence

\(\Lambda_{NP}\)

leptons:

\[
\tau \rightarrow \mu \gamma
\]

\[
\tau \rightarrow \mu \mu \mu
\]

\[
\tau \rightarrow \mu \eta
\]

NP could make these decays possible

need precision (statistics) to challenge the SM
LHCb vs Super Flavor Factories

LHCb

- Large samples (but low efficiencies)
- B_s oscillations
- B_c, bottom baryons
- $B^{0}_{s,d} \to \mu \mu$
- $B \to J/\psi K_S$
- $D^0 \to K^+ \pi^-, K^+ K^-$

Super B Factories

- Generally more final states, esp. with photons, missing energy
- Rare decays, such as $B^+ \to l^+ \nu, B^+ \to K^+ \nu \bar{\nu}$
- $b \to s\gamma, b \to s l^+ l^-$
- Inclusive processes
- $B \to J/\psi \phi, \pi \pi, \rho \pi, \rho \rho, \pi \pi \pi$
- $D^0 \bar{D}^0$ mixing

LHCb and Super B Fact. will run concurrently. largely complementary
Energy reach of the Super Flavor Factories

No flavor structure for NP: $\Lambda_{NP} \geq 100 - 1000$ TeV „NP flavor problem“

Look for FCNC processes (highly suppressed in SM): ~ 2 OoM increase

Assumption on NP flavor sector: Minimal Flavor Violation (MFV)

Measure, e.g., the decay rates:

$B^0 \rightarrow X_s^0 l^+ l^−$ (inclusive)
$B^0 \rightarrow K^0 l^+ l^−$ (exclusive)

$\int \mathcal{L} dt = 50 \text{ ab}^{-1}$

~2 OoM increase
Upgrade Program for LHCb

LHCb Detector

Tracking Station: p for lower energy tracks and long lived V^0 reconstruction

Tracking Stations: p of charged particles that traverse the dipole magnet

Interaction region

B

1 cm

$\tau_B = 1.5 \text{ ps}$

VELO: primary vertex impact parameter displaced vertex

RICH: p, K, π discrimination

Muon System

Calorimeter Systems: PID: h, e, γ, π^0

7 TeV:

$\sigma(b\bar{b}) \sim 250 \mu b$

(reduction fact. of 0.5 only w.r.t. 14 TeV)
LHCb Trigger & DAQ System

Forward spectrometer: huge particle flux even at deliberately reduced lumi @LHCb (operate @ 2×10^{32})

How to survive @ LHC design luminosities:

Example: $B_s \rightarrow D_s K$ (MC simulation)

Decay time resolution = 40 fs

Trigger on impact parameter
Measurement of decay distance (and then proper decay time)
LHCb Trigger & DAQ System Upgrade

LHC luminosity upgrade planned (2015-2016):

- $10 \times L_{\text{design}}$

Bottlenecks@2×10^{33}:

- 1MHz readout rate, long latency (2.5μs)

Ambitious Solution:

- Increase R/O to 40MHz, S/W trigger @ 30MHz on CPU farm

Replace VELO & essentially the entire F/E electronics
Strategies for High Luminosity @ Super BF’s

\[
\mathcal{L} = \frac{N_+ N_- f}{4\pi \sigma_x \sigma_y} R
\]

basic formula for the (instantaneous) luminosity

Accelerator physicists usually like this one better:

\[
\mathcal{L} = \frac{\gamma^+}{2e r_e} \left(1 + \frac{\sigma_y}{\sigma_x} \right) \left(I + \xi_{y,+} \right) \left(\frac{R}{R_{\xi_y}} \right)
\]

beam-beam parameter (or tune shift)

\[
\xi_{y,+} = \frac{r_e}{2\pi \gamma^+} \left(\frac{\beta y N_-}{\sigma_x (\sigma_x + \sigma_y)} \right) R_{\xi_y}
\]

vertical beta function at IP

\[
\sigma_{x,y} = \sqrt{\varepsilon_{x,y} \beta_{x,y}}
\]

beam emittance (need damping ring(s))

\[R_{\xi,y} : \text{reduction factors (geometrical)} \]

\[\sigma_{x,y} : \text{beam spot size at IP} \]
SuperB Project (INFN)

Proto-Collaboration:
Italy, USA, France, Russia, Poland, UK, Spain, Canada
SuperB @ LNF

ILC-like FF ("nano beam")
LER: polarized e⁻

ship LER from PEP, + parts of BaBar

HER: 7 GeV
LER: 4 GeV

X-angle 60 mrad

L > 10^{36} / cm s

Damping ring

RF buildings
Cooling Towers
Klystron PS
Collider hall

5.8 m

566x677
SuperB Detector

Some main components from BaBar (magnet, yoke ..)

New:
- Drift Chamber,
- PID (RICH),
- EM calorimeter (Lyso or CsI?)

New SVT:
- 5 + 1 layers
- L0 under discussion
Toward green light

- The project is the first “flagship project” of the new national research plan
- The project has been mentioned as a reciprocity condition in a Russian Italian agreement on ignitor (nuclear fusion)
- A formal commitment with INFN for the project with the declaration of some available budget in the current year is expected
- This commitment will set the start of the project
SuperKEKB and Belle-II

Belle-II Collaboration founded in Dec. 2008, now over 300 members from 47 institutions and 13 countries, with strong European participation: Austria, Germany, Czech Republic, Poland, Spain, Slovenia, (mainly in Pixel Vertex Detector, Si Strip Detector)
Upgrade of superconducting cavities

Tunnel already exists. Most of the components (magnets, klystrons, etc) will be re-used.

Goal: reach $> 8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
Comparison of Options

<table>
<thead>
<tr>
<th></th>
<th>KEKB Design</th>
<th>KEKB Achieved (): with crab</th>
<th>SuperKEKB High-Current Option</th>
<th>SuperKEKB Nano-Beam Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_y^* (mm)(LER/HER)</td>
<td>10/10</td>
<td>6.5/5.9 (5.9/5.9)</td>
<td>3/6</td>
<td>0.21/0.37</td>
</tr>
<tr>
<td>ε_x (nm)</td>
<td>18/18</td>
<td>18/24 (15)</td>
<td>24/18</td>
<td>2.8/1.6</td>
</tr>
<tr>
<td>σ_y (μm)</td>
<td>1.9</td>
<td>1.1 (0.84)</td>
<td>0.85/0.73</td>
<td>0.070/0.052</td>
</tr>
<tr>
<td>ξ_y</td>
<td>0.052</td>
<td>0.108/0.056 (0.101/0.096)</td>
<td>0.3/0.51</td>
<td>0.07/0.07</td>
</tr>
<tr>
<td>σ_z (mm)</td>
<td>4</td>
<td>~ 7</td>
<td>5(LER)/3(HER)</td>
<td>6</td>
</tr>
<tr>
<td>I_{beam} (A)</td>
<td>2.6/1.1</td>
<td>1.8/1.45 (1.62/1.15)</td>
<td>9.4/4.1</td>
<td>3.70/2.13</td>
</tr>
<tr>
<td>$N_{bunches}$</td>
<td>5000</td>
<td>1387 (1585)</td>
<td>5000</td>
<td>2778</td>
</tr>
<tr>
<td>Luminosity (10^{34} cm$^{-2}$ s$^{-1}$)</td>
<td>1</td>
<td>1.76 (2.11)</td>
<td>53</td>
<td>80</td>
</tr>
</tbody>
</table>

High Current Option includes crab crossing and travelling focus. Nano-Beam Option does not include crab waist yet. **Nano-opt chosen**
Major Machine Components to Upgrade

- **New ante-chamber beam pipes** for both rings
 - 3km x 2 in total
 - Al/Cu for LER/HER
 - Mitigation techniques for suppression of electron cloud
- **New IR optics**
 - New superconducting/permanent magnets around IP
 - Optimization of the compensation solenoid
- **Additional normal magnets to reduce emittance**
 - Replace dipoles & change the wiggler layout for LER
- **New HER arc lattice**
- **More precise magnet setting ↔ power supplies**
- **Rearrangement of existing ARES cavities with additional power sources**
- **New positron damping ring** and new positron target
- **New RF gun** for electrons with reduced emittance
Expected Luminosity Development

- 50 /ab
- 1.2 /ab/month (8 \times 10^{35} /cm^2/s)
- 0.9 /ab/month (6 \times 10^{35} /cm^2/s)
- 0.6 /ab/month (4 \times 10^{35} /cm^2/s)

- Physics Program Evaluation
- Shutdown for Upgrade
- Learning Curve
Funding Situation of the Machine

KEKB upgrade plan has been approved

June 23, 2010 High Energy Accelerator Research Organization (KEK)

The MEXT, the Japanese Ministry that supervises KEK, has announced that it will appropriate a budget of 100 oku-yen (approx $110M) over the next three years starting this Japanese fiscal year (JFY2010) for the high performance upgrade program of KEKB. This is part of the measures taken under the new “Very Advanced Research Support Program” of the Japanese government.

“We are delighted to hear this news,” says Masanori Yamauchi, former spokesperson for the Belle experiment and currently a deputy director of the Institute of Particle and Nuclear Studies of KEK. “This three-year upgrade plan allows the Belle experiment to study the physics from decays of heavy flavor particles with an unprecedented precision. It means that KEK in Japan is launching a renewed research program in search for new physics by using a technique which is complementary to what is employed at LHC at CERN.”
Detector for SuperKEKB: Belle-II

Much higher backgrounds from SuperKEKB !!

```
Detector for SuperKEKB: Belle-II

7 GeV e^-

“backward”

“Belle II”

Belle

4 GeV e^+

“forward”

SVD: 4 lyr -> 2 DEPFET layers + 4 DSSD layres
CDC: small cell, long lever arm
ACC+TOF -> TOP+A-RICH
ECL: waveform sampling, pure CsI for end-caps
KLM: RPC -> Scintillator +SiPM (end-caps)

New dead time free readout and high speed computing systems
```
Nano beam option: 1 cm radius of beam pipe

- 2 layer Si pixel detector (DEPFET technology) (R = 1.4, 2.2 cm) monolithic sensor thickness 75 µm (!), pixel size ~50 x 50 µm²
- 4 layer Si strip detector (DSSD) (R = 3.8, 8.0, 11.5, 14.0 cm)

Significant improvement in z-vertex resolution

\[
\sigma = a + \frac{b}{p\beta \sin^{5/2} \theta}
\]

Belle II:
\[
\begin{align*}
a &= 8.5 [\mu m] \\
b &= 9.6 [\mu m GeV]
\end{align*}
\]
Conclusions

- “New Physics” needed to explain the observed matter-antimatter asymmetry → new sources of CP violation

- A new generation of B factories planned to search for NP, complementary to the LHC program. LHCb plans for trigger upgrade

- At KEK (Japan), the SuperKEKB project is well under way: Strong contribution from Europe (pixel vertex detector) Initial funding by Japanese Government of 100 M$ granted:

 „Green Light“ for SuperKEKB

- Plan to have machine and detector ready for data taking by early 2014

- SuperB Project in Frascati under discussion using „nano beams“ (this scheme was also adopted by SuperKEKB) initial funding not yet secured

- Excellent prospects for flavor physics during the LHC era
Backup
p-channel FET on a completely depleted bulk

A deep n-implant creates a potential minimum for electrons under the gate ("internal gate")

Signal electrons accumulate in the internal gate and modulate the transistor current ($g_q \sim 400 \text{ pA/e}^-$)

Accumulated charge can be removed by a clear contact ("reset")

Fully depleted:
- large signal, fast signal collection
- Low capacitance, internal amplification \(\rightarrow\) low noise

Depleted p-channel FET
- Transistor on only during readout: low power
- Complete clear \(\rightarrow\) no reset noise
Row wise read-out ("rolling shutter")

- Select row with external gate
- Read current, clear DEPFET, read current again

→ the difference is the signal

- Only one row active → low power consumption
- Two different auxiliary ASICs needed
Thinning Technology

1. implant backside on sensor wafer
2. bond sensor wafer to handle wafer
3. thin sensor side to desired thickness
4. process DEPFETs on top
5. structure resist, etch backside up to oxide/implant

- Sensor wafer bonded on “handle” wafer.
- Rigid frame for handling and mechanical stiffness
- 50 μm thickness produced
- Samples of 10x1.3 cm² & frame of 1 & 3 mm width
- Electrical properties ok (diodes)
Support and Cooling Structure: Mockup
Kapton cable (from DHP to DHH) cannot be longer than ~ 20-30 cm

need location for the DHH in low radiation area (FPGAs)

need to design patch panel (signal transmission Kapton -> TWP)
New Tracking System for Belle-II

Belle-II

CDC

PXD (2 layers)

Small cell chamber

SVD

Pre-amp

R195

R160

R220

Belle

C. Kiesling, Rencontres de Blois, Chateau de Blois, Juli 15-20, 2010
New Central Drift Chamber (CDC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Belle</th>
<th>Belle-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius of inner boundary (mm)</td>
<td>77</td>
<td>160</td>
</tr>
<tr>
<td>Radius of outer boundary (mm)</td>
<td>880</td>
<td>1096</td>
</tr>
<tr>
<td>Radius of inner most sense wire (mm)</td>
<td>88</td>
<td>168</td>
</tr>
<tr>
<td>Radius of outer most sense wire (mm)</td>
<td>863</td>
<td>1082</td>
</tr>
<tr>
<td>Number of layers</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>Number of total sense wires</td>
<td>8400</td>
<td>15104</td>
</tr>
<tr>
<td>Effective radius of dE/dx measurement (mm)</td>
<td>752</td>
<td>928</td>
</tr>
<tr>
<td>Gas</td>
<td>He-C$_2$H$_6$</td>
<td>He-C$_2$H$_6$</td>
</tr>
<tr>
<td>Diameter of sense wire (μm)</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
New Central Drift Chamber (CDC)

Belle

- Normal cell: 13.3 x 16 mm²
- Small cell: 5.4 x 5.0 mm²
- dE/dx: 4.8% for 56 layers

Belle-II

- Small cells, longer lever arm
- Z-coordinate via standard stereo wire arrangement, charge division planned

C. Kiesling, Rencontres de Blois, Chateau de Blois, Juli 15-20, 2010
New Si System for Belle-II: SuperSVD

Layer	# Ladders	Rect. Sensors [50\(\mu\)m]	Rect. Sensors [75\(\mu\)m]	Wedge Sensors	APVs
6 | 17 | 0 | 68 | 17 | 850
5 | 14 | 0 | 42 | 14 | 560
4 | 10 | 0 | 20 | 10 | 300
3 | 8 | 16 | 0 | 0 | 192
Sum: | **49** | **16** | **130** | **41** | **1902**

300 \(\mu\)m DSSD

Pitch:
- 50/160 \(\mu\)m (rect.)
- 50-75/160 \(\mu\)m (wedge)

C. Kiesling, Rencontres de Blois, Chateau de Blois, Juli 15-20, 2010
Chip on Sensor: The Origami Concept (SVD)

- Thinned readout chips (APV25) on sensor
- Strips of bottom side are connected by flex fanouts wrapped around the edge
- All readout chips are aligned → single cooling pipe
- Shortest possible connections → high signal-to-noise ratio

Total material budget: 0.6% X_0 (cf. 0.48% for conventional readout)
SVD Mechanics and Material Budget

Sandwich Design

Profile [mm]

Radiation Length [%]

Pipe
Coolant
APV
Kapton
Sensor
CFRP
Rohacell

“Batman” distribution of pipe and coolant

Pipe, Coolant, APV, Kapton, Sensor, CFRP, Rohacell
Goal:

3σ K/π separation (barrel)
4σ K/π separation up to 4 GeV (end caps)

TOP: time of propagation
Ring imaging with:

- One coordinate with a few mm precision
- Time-of-arrival

→ Excellent time resolution < ~40ps
required for single photon in 1.5T B field
Proximity focusing RICH with silica aerogel as Cherenkov radiator for new Belle forward PID.

Baseline Design for Endcap PID (A-RICH)

- x-y view of forward end-cap
- Position sensitive PD
- In the B field of 1.5 Tesla
- Cherenkov photons
- Readout electronics
- High index
- Low index

C. Kiesling, Rencontres de Blois, Chateau de Blois, Juli 15-20, 2010
PID Improvement in Belle-II

Present Belle PID

B^0 \rightarrow \rho^0 \gamma

B^+ \rightarrow \rho^+ \gamma

B \rightarrow \rho \gamma
difficult because of dominating
K^* \gamma

(Background from K’s misident. as π’s)

B_{rs} (V_{ts}^* (V_{td}^*)^2

Br(B \rightarrow K^* \gamma) \sim \left| \frac{V_{td}}{V_{ts}} \right|^2

(\sim 1/40)
• Increase of dark current due to neutron flux
• Fake clusters & pile-up noise

- **Barrel:** 500 ns shaping + 2MHz w.f. sampling.
- **Endcap:** rad. hard crystals with short decay time (e.g. pure CsI) + photopentodes 30ns shaping + 43MHz w.f. sampling

Pileup Reduction:

- **Barrel**: x1/1.5
- **BW endcap**: x1/5

FADC: 16 samples
Upgrade of KLM (Endcaps)

• Two independent (x and y) layers in one superlayer made of orthogonal scintillator strips with WLS read out
• Photo-detector: avalanche photodiode in Geiger mode (SiPM)
• ~120 strips in one 90° sector
 (max L=280cm, w=25mm)
• ~30000 read out channels
• Geometrical acceptance > 99%

C. Kiesling, Rencontres de Blois, Chateau de Blois, Juli 15-20, 2010