Z Observation at Belle

Ruslan Chistov (ITEP, Moscow)
Representing the Belle Collaboration

- Introduction
- Observation of $Z(4430)^+ \rightarrow \pi^+ \psi'$ at Belle
- Observation of $Z_{1,2}^+ \rightarrow \pi^+ \chi_{c1}$ at Belle
- Update of $Z(4430)^+$ at Belle (NEW)
- Summary
High *Luminosity* has permitted us to obtain unexpected results on charm spectroscopy, particularly with charmonium in the final state.

This has modified our understanding of known and predicted charmonia levels.
Z(4430) at Belle

Study of B → Kπ⁺ψ′:

ψ′ → l⁺l⁻ and J/ψπ⁺π⁻ (M(ππ) > 0.44 GeV);

B-candidates inv. mass is kinematically constrained to m_B (experim. resolution for M(ψ′π⁺) ~ 2.5 MeV);

Horizontal band

- K*(1430)
- K*(892)

Study it
Z(4430)$^+$ at Belle

Fit: S-wave Breit-Wigner + Background with kinematic thresholds

Cross-checks: Z(4430)$^+$ is present in both ψ' subsamples

Total significance: 6.5 σ

$M = (4433\pm4\pm1)$ MeV

$\Gamma = (44^{+17}_{-13}^{+30}_{-11})$ MeV

$\text{Br}(B \to KZ) \times \text{Br}(Z \to \psi(2S)\pi^+) = (4.1\pm1.0\pm1.3) \cdot 10^{-5}$
Z(4430) at Belle

\[B^+ \rightarrow Z^+ K_S \quad \text{or} \quad B^0 \rightarrow Z^- K^+ \]

\[Z^\pm \rightarrow \psi(2S) \pi^\pm \]

A variety of interpretations:
- Threshold effect
 (J.L.Rosner 0708.3496, D.V.Bugg, 0709.1254);
- D* \(D_1\) molecular state
 (X. Liu and Y.R. Liu, 0711.0494);
- Radially excited tetraquark
 (L.Maiani, A.D.Polosa, V.Riquer, 0708.3997);
- Baryonium state
 (C.F.Qiao, 0709.4066);
- Hadro-charmonium
 (S.Dubinskiy, M.B.Voloshin, 0803.2224); ...

Charged, \(I=1 \)

Cannot be a conventional charmonium or hybrid state

Should contain light quarks in addition to \(cc \).
The observation of $Z(4430)$ has motivated us to continue the study of other $B \rightarrow (c\bar{c}) \pi^+K^-$ decays.

New charged Z’s decaying into $\pi^+\chi_{c1}$

PRD 78, 072004 (2008)
Study of $B \rightarrow K^{-}\pi^{+}\chi_{c1}$

Very simple selection, then look at DP:

B-signal

Horizontal band

Study it

$K^{*}(892)$

$K^{*}(1430)$
Isobar Fit to entire Dalitz Plot:

\[\kappa + K^*(892) + K^*(1410) + K^*_0(1430) + K^*_2(1430) + K^*(1680) + K^*_3(1780) + (Z's) + \text{Interference} \]

All known K^*'s below 1900 MeV
K^{-π^+\chi_{c1}} Dalitz Plot Formalism

The decay $B \rightarrow K\pi\chi_{c1}$ is described by 6 variables, $M(\pi\chi_{c1})$, $M(K\pi)$, helicity angles $\theta_{\chi_{c1}}$, $\theta_{J/\psi}$ and angles btw the production and decay planes $\varphi_{\chi_{c1}}$, $\varphi_{J/\psi}$.

Fitting function:

$$F(s_x, s_y) = S(s_x, s_y) \times \epsilon(s_x, s_y) + B(s_x, s_y)$$

$$A^R_{\lambda}(s_x, s_y) = F^\Lambda_B \cdot \frac{1}{M_R^2 - s_R - iM_R \Gamma(s_R)} \cdot F^\Lambda_R \cdot T_{\lambda}$$

$$\cdot \left(\frac{p_B}{m_B} \right)^{L_B} \cdot \left(\frac{p_R}{\sqrt{s_R}} \right)^{L_R}$$

Amplitude for $B \rightarrow K\pi\chi_{c1}$ via 2-body intermediate res. R and χ_{c1} in hel. λ

Angle dependent term:

$$T_{\lambda} = d^J_{0\lambda}(\theta_{Z^*})$$

Signal event density

$$S(s_x, s_y) = \sum_{\lambda' = -1, 0, 1} \left| \sum_{K^*} a^K_{\lambda'} e^{i\phi_{K^*}} A^K_{\lambda'}(s_x, s_y) \right|^2 + \sum_{\lambda' = -1, 0, 1} d^1_{\lambda'\lambda}(\theta) a^{Z^*}_{\lambda'} e^{i\phi_{Z^*}} A^{Z^*}_{\lambda'}(s_x, s_y)$$

Integrate over all angles; reconstruction efficiency is uniform over full angle ranges and interference terms between different χ_{c1} helicity states are negligibly small.
The fit results in DP slices without any Z’s:

Confidence level of this fit: 3×10^{-10}
The fit results in DP slices with one Z:

Confidence level of this fit: 0.5%

Try an additional Z
The fit results in vertical DP slices with two Z’s:

Confidence level of this fit: 42%
Systematics and significances (incl. d.o.f.) from various fit models:

TABLE II. Different fit models that are used to study systematic uncertainties and the significances of the single- and double-Z^+ hypotheses.

<table>
<thead>
<tr>
<th>Model</th>
<th>Significance of one Z^+</th>
<th>One Z^+ vs two Z^+</th>
<th>Significance of two Z^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.7σ</td>
<td>5.7σ</td>
<td>13.2σ</td>
</tr>
<tr>
<td>2</td>
<td>15.6σ</td>
<td>5.0σ</td>
<td>16.6σ</td>
</tr>
<tr>
<td>3</td>
<td>13.4σ</td>
<td>5.4σ</td>
<td>14.8σ</td>
</tr>
<tr>
<td>4</td>
<td>10.4σ</td>
<td>5.2σ</td>
<td>14.4σ</td>
</tr>
<tr>
<td>5</td>
<td>13.3σ</td>
<td>5.6σ</td>
<td>14.8σ</td>
</tr>
<tr>
<td>6</td>
<td>12.9σ</td>
<td>5.6σ</td>
<td>14.4σ</td>
</tr>
<tr>
<td>7</td>
<td>9.0σ</td>
<td>5.3σ</td>
<td>10.3σ</td>
</tr>
<tr>
<td>8</td>
<td>11.3σ</td>
<td>5.1σ</td>
<td>13.5σ</td>
</tr>
<tr>
<td>9</td>
<td>11.4σ</td>
<td>5.3σ</td>
<td>13.7σ</td>
</tr>
<tr>
<td>10</td>
<td>10.8σ</td>
<td>5.4σ</td>
<td>13.2σ</td>
</tr>
<tr>
<td>11</td>
<td>9.5σ</td>
<td>5.3σ</td>
<td>10.7σ</td>
</tr>
<tr>
<td>12</td>
<td>7.7σ</td>
<td>5.4σ</td>
<td>9.2σ</td>
</tr>
<tr>
<td>13</td>
<td>6.2σ</td>
<td>5.6σ</td>
<td>8.1σ</td>
</tr>
<tr>
<td>14</td>
<td>12.4σ</td>
<td>5.3σ</td>
<td>13.8σ</td>
</tr>
</tbody>
</table>

The worst case, but the param’s of this new K^* are far from those for all known K^*’s
Parameters of the new EXOTIC $Z_{1,2}^+ \rightarrow \pi^+ \chi_{c1}$ states and Mass($\pi^+ \chi_{c1}$) distribution

$M_1 = (4051 \pm 14^{+29}_{-41})$ MeV/c^2,
$\Gamma_1 = (82^{+21}_{-17}^{+47}_{-22})$ MeV,
$M_2 = (4248^{+44}_{-29}^{+180}_{-35})$ MeV/c^2,
$\Gamma_2 = (177^{+54}_{-39}^{+316}_{-61})$ MeV,

with the product branching fractions of

$\mathcal{B}(\bar{B}^0 \rightarrow K^- Z_{1}^+) \times \mathcal{B}(Z_{1}^+ \rightarrow \pi^+ \chi_{c1}) = (3.0^{+1.5}_{-0.8}^{+3.7}_{-1.6}) \times 10^{-5},$

$\mathcal{B}(\bar{B}^0 \rightarrow K^- Z_{2}^+) \times \mathcal{B}(Z_{2}^+ \rightarrow \pi^+ \chi_{c1}) = (4.0^{+2.3}_{-0.9}^{+19.7}_{-0.5}) \times 10^{-5},$

are the same order as obtained for other, possibly exotic X,Y,Z states.

No discrimination between J=0 or 1
Dalitz analysis of $B \rightarrow K^{-}\pi^{+}\psi'$

Data sample from original analysis is used

The same fitting technique as in $B \rightarrow K\pi\chi_{c1}$ is used

New results on $Z(4430)^+$

Submitted to PRD(RC), arXiv:0905.2869
Dalitz Plot slices:

Fit without a Z resonance: CL=0.1%

Introduce Z
NEW results on Z(4430)$^+$ from Dalitz plot fit

The results of the DP fit in its slices with Z:
Confidence Level of the fit WITH Z(4430)$^+$ is 36%

Significance of Z is 6.4σ
Different fit models and the significance of Z(4430)$^+$

<table>
<thead>
<tr>
<th>Model</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>6.4σ</td>
</tr>
<tr>
<td>no $K_0^*(1430)$</td>
<td>6.6σ</td>
</tr>
<tr>
<td>no $K^*(1680)$</td>
<td>6.6σ</td>
</tr>
<tr>
<td>release constraints on κ mass & width</td>
<td>6.3σ</td>
</tr>
<tr>
<td>new K^* ($J = 1$)</td>
<td>6.0σ</td>
</tr>
<tr>
<td>new K^* ($J = 2$)</td>
<td>5.5σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term</td>
<td>6.3σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term, release constraints on κ mass & width</td>
<td>5.8σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term, new K^* ($J = 1$)</td>
<td>5.5σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term, new K^* ($J = 2$)</td>
<td>5.4σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term, no $K^*(1410)$</td>
<td>6.3σ</td>
</tr>
<tr>
<td>add non-resonant $\psi'K^-$ term, no $K^*(1680)$</td>
<td>6.6σ</td>
</tr>
<tr>
<td>LASS parameterization of S-wave component</td>
<td>6.5σ</td>
</tr>
</tbody>
</table>

Assume $J_{Z(4430)} = 0$. No fit improvement for $J_{Z(4430)} = 1$. Significance of Z(4430)$^+$ in different fit models is always larger than 5σ.
Updated parameters of $Z(4430)^+$ from Dalitz plot fit

Sum of 3 slices (K*’s veto)

Belle confirms the original result on $Z(4430)^+$

$$M = (4443^{+15}_{-12}^{+17}_{-13}) \text{ MeV}/c^2$$

$$\Gamma = (109^{+86}_{-43}^{+57}_{-52}) \text{ MeV}$$

$$\mathcal{B}(B^0 \to K^- Z(4430)^+) \times \mathcal{B}(Z(4430)^+ \to \pi^+ \psi’) = (3.2^{+1.8}_{-0.9}^{+5.3}_{-1.6}) \times 10^{-5}$$

Width is larger than original but uncertainties are large.
Comparison with BaBar (arXiv:0811.0564)

BaBar paper: Belle and BaBar data are statistically consistent.
⇔ peak in $M(\pi^+\psi')$ is present also in BaBar data with similar to Belle shape:

Why different significances are reported? (6.4σ Belle vs. 1.9–3.1σ BaBar)
⇔ assumption about background is crucial.
Summary of Belle results on charged Z’s

• 2007: Belle observed first charged charmoniumlike state, $Z(4430)^+$ decaying into $\psi'\pi^+$

• 2008: Belle continued the study of $B \rightarrow K\pi(c\bar{c})$ decays and observed two new charged charmoniumlike states $Z(4050)^+$ and $Z(4250)^+$, decaying into $\pi^+\chi_{c1}$

• Update on $Z(4430)^+$: Dalitz Plot analysis confirms original observation. The $Z(4430)^+$ has a significance of 6.4σ. The parameters of $Z(4430)^+$ from the DP analysis agree and supersede previous Belle measurement. BaBar has not confirmed $Z(4430)^+$ production so far.

These states have similar character: have non-zero electric charge and decay into ordinary charmonia and π^+. The current options for their nature include tetraquark, molecular type states and hadro-charmonium.
Back-up slides
The mechanisms of new particle production at B-factories

From B-decays, e.g.
\[B^+ \rightarrow X(3872)K^+ \]

In double charmonium production, e.g.
\[e^+e^- \rightarrow J/\psi\ X(3940) \]

In \(\gamma\gamma \) fusion, e.g.
\[\gamma\gamma \rightarrow \eta_c(2S) \text{ or } \gamma\gamma \rightarrow Z(3930) \]

In radiative return, e.g.
\[e^+e^- \rightarrow \gamma_{\text{ISR}}\ Y(4260) \rightarrow J/\psi\ \pi^+\pi^- \]

Can charged Z be in principle produced here?

Yes

yet unknown
\((e^+e^- \rightarrow X^+Y^- ??) \)

Since only neutrals can be produced

No
Comparison with BaBar

BaBar paper: Belle and BaBar data are statistically consistent. ⇔ peak in \(M(\pi^+\psi') \) is present also in BaBar data with similar to Belle shape:

![Belle](image1.png)

![BaBar](image2.png)

Why different significances are reported? (6.4\(\sigma \) Belle vs. 1.9–3.1\(\sigma \) BaBar) ⇔ assumption about background is crucial.

BaBar method is a simplification of amplitude analysis with a lot of (unphysical?) freedom in description of background.

Dalitz analysis is preferable.
Formalism of $B \rightarrow K^- \pi^+\chi_{c1}$ Dalitz analysis

Integrate over ψ' decay angles
\Leftrightarrow interference between different χ_{c1} helicity states vanish
\Leftrightarrow consider χ_{c1} as stable

Amplitude = sum over quasi two-body contributions
Breit-Wigner \times angular dependence

Consider intermediate resonances
$k, K^*(892), K^*(1410), K_0(1430), K_2(1430), K^*(1680), Z('s)^+$

Fit function is corrected for efficiency and background.

Use the same data sample as in $Z(4430)^+$ observation paper.

$605 fb^{-1}$
M(Kπ) description in B→Kπ⁺χc₁

\(M^2(K^+\pi^+), \text{GeV}^2/c^4\)

Events / 0.058 GeV\(^2/c^4\)
M(Kπ) description in B→Kπ⁺ψ’
Cross-Check: angular distributions of the χ_{c1} and J/ψ in $B \rightarrow K\pi^+\chi_{c1}$

Data and predictions from the default fit model agree very well and little discrimination between spin 0 and 1
Dalitz Plot efficiency in B → K⁻π⁺χᶜ₁
Observed and predicted charmonia

Described well the observed spectrum of $c\bar{c}$ states

A number of unexpected exotic states above $D\bar{D}^{(*)}$ thresholds that do not fit into available $c\bar{c}$ slots