NEW RESULTS IN D-MIXING

David Cinabro, Wayne State
Outline

- Parameters and Observables
- Current Status
- y_{CP} from LHC-b
- Preliminary y_{CP} from Belle, full data sample
- Preliminary y_{CP} from BaBar, full data sample
- Conclusion
Parameters and Observables

- Define the mass eigenstates and phase conventions:

\[|D_1\rangle = p|D^0\rangle + q|\bar{D}^0\rangle \]
\[|D_2\rangle = p|D^0\rangle - q|\bar{D}^0\rangle \]
\[|q|^2 + |p|^2 = 1 \]

\[CP|D^0\rangle = -|\bar{D}^0\rangle \]
\[CP|\bar{D}^0\rangle = -|D^0\rangle \]

- Mixing and CP violation (CPV) parameters:

\[x = \frac{m_2 - m_1}{\Gamma} \]
\[y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \]
\[\Gamma = \frac{\Gamma_1 + \Gamma_2}{2} \]

\[\text{arg} \left(\frac{q}{p} \right) = \varphi \]

note that \(\frac{q A_f}{p A_f} \) is the physical quantity and \(\varphi \) represents the weak phase from the mixing amplitude
Parameters and Observables

Let's consider a generic final state f:

$$\langle f|H|D^0 \rangle = A_f \quad \langle f|H|\overline{D}^0 \rangle = \overline{A}_f$$

$$r(t) \propto \left| \langle f|H|D^0(t) \rangle \right|^2 = e^{-\Gamma t} \left\{ \left(|A_f|^2 + \left| \frac{q}{p} \right|^2 |\overline{A}_f|^2 \right) \cosh(\Gamma yt) - 2 \Re \left(\frac{q}{p} A_f^* \overline{A}_f \right) \sinh(\Gamma yt) \\
+ \left(|A_f|^2 - \left| \frac{q}{p} \right|^2 |\overline{A}_f|^2 \right) \cos(\Gamma xt) + 2 \Im \left(\frac{q}{p} A_f^* \overline{A}_f \right) \sin(\Gamma xt) \right\}$$

$$\bar{r}(t) \propto \left| \langle f|H|\overline{D}^0(t) \rangle \right|^2 = e^{-\Gamma t} \left\{ \left(|\overline{A}_f|^2 + \left| \frac{p}{q} \right|^2 |A_f|^2 \right) \cosh(\Gamma yt) - 2 \Re \left(\frac{p}{q} A_f A_f^* \right) \sinh(\Gamma yt) \\
+ \left(|\overline{A}_f|^2 - \left| \frac{p}{q} \right|^2 |A_f|^2 \right) \cos(\Gamma xt) + 2 \Im \left(\frac{p}{q} A_f A_f^* \right) \sin(\Gamma xt) \right\}$$

$$2y_{CP} = \left(|q/p| + |p/q| \right) y \cos \phi - \left(|q/p| - |p/q| \right) x \sin \phi$$
Current Status

- Mixing, even allowing for CP-violation, is firmly established.
No hint of new physics as $x \approx y$
Measuring y_{CP}

Assuming $|x| \ll 1, |y| \ll 1$ we have:

\[
\begin{align*}
 r(t) & \propto \exp(-t/\tau_{hh}^+) \\
 \bar{r}(t) & \propto \exp(-t/\bar{\tau}_{hh}^+)
\end{align*}
\]

measured quantities

We then extract the mixing parameter:

\[
y_{CP} = \frac{\tau_{K\pi}}{2} \left(\frac{1}{\tau_{hh}^+} + \frac{1}{\bar{\tau}_{hh}^+} \right) - 1
\]

\[
y_{CP} = \frac{\Gamma^+ + \Gamma^-}{2\Gamma_D} - 1
\]

\[
\tau_{hh}^+ = \tau(D^0 \rightarrow h^+ h^-) = \frac{1}{\Gamma^+}
\]

\[
\bar{\tau}_{hh}^+ = \tau(\bar{D}^0 \rightarrow h^+ h^-) = \frac{1}{\Gamma^-}
\]

\[
\tau_{K\pi} = \tau(D^0 \rightarrow K^- \pi^+) = \frac{1}{\Gamma_D}
\]

$y_{CP} \neq 0 \Rightarrow$ Mixing

if CP conserved $\Rightarrow y_{CP} \equiv y$
Two sources for D^0
y_{CP} at LHC-b

D* Tag leads a clean sample

Easily able to see the two production methods to get expected lifetime
\(y_{CP} \text{ at LHC-b}

KK mode is also clean

\[y_{CP} = (5.5 \pm 6.3 \text{(stat)} \pm 4.1 \text{(sys)}) \times 10^{-3} \]

Lifetime distribution is lovely. Systematic uncertainty dominated by secondary like background. Only tiny fraction of data.
\(\gamma_{CP} \) at Belle

- Preliminary analysis of full data set

<table>
<thead>
<tr>
<th>channel</th>
<th>KK</th>
<th>K(\pi)</th>
<th>(\pi \pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yield</td>
<td>242k</td>
<td>2.61M</td>
<td>114k</td>
</tr>
<tr>
<td>purity</td>
<td>98.0%</td>
<td>99.7%</td>
<td>92.9%</td>
</tr>
</tbody>
</table>
yCP at Belle

SVD1

3-layer SVD
153 fb$^{-1}$
1999-2003

SVD2

4-layer SVD
823 fb$^{-1}$
2003-2010
y_{CP} at Belle

$y_{CP} = (11.1 \pm 2.2$ (stat) ± 1.1(sys)) x 10^{-3}$

<table>
<thead>
<tr>
<th>source</th>
<th>Δy_{CP} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptance</td>
<td>0.050</td>
</tr>
<tr>
<td>SVD misalignments</td>
<td>0.060</td>
</tr>
<tr>
<td>mass window position</td>
<td>0.007</td>
</tr>
<tr>
<td>background</td>
<td>0.059</td>
</tr>
<tr>
<td>resolution function</td>
<td>0.030</td>
</tr>
<tr>
<td>binning</td>
<td>0.021</td>
</tr>
<tr>
<td>sum in quadrature</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Sample

- SVD1: 1.46 ± 0.60
- SVD2: 1.06 ± 0.23
- SVD1 + SVD2: 1.11 ± 0.22

Thursday, May 31, 12
\textbf{yCP at BaBar}

- Preliminary results from full data sample

Use of untagged $K\pi$ for $x4$ in statistics. New is combined tagged and untagged analysis.
yCP at BaBar

\[\text{\(D^{*+} \) at BaBar} \]

\[\begin{align*}
\text{\(D^{*+} \pi\pi \)} & : \quad \text{Data, Signal, Comb., Charm} \\
\text{\(D^{*+} KK \)} & : \quad \text{Data, Signal, Comb., Charm} \\
\text{\(D^{*\pm} K\pi \)} & : \quad \text{Data, Signal, Comb., Charm} \\
\text{\(\bar{D}^{\mp} K\pi \)} & : \quad \text{Data, Signal, Comb., Charm} \\
\end{align*} \]

\[\begin{align*}
\text{CP+ lifetimes} & : \quad \tau^+ = (405.69 \pm 1.25) \text{ fs} \\
& \quad \bar{\tau}^+ = (406.40 \pm 1.25) \text{ fs} \\
\text{D^0 lifetime} & : \quad \tau_{K\pi} = (408.97 \pm 0.24) \text{ fs} \\
\end{align*} \]

[stat error only]
y_{CP} at BaBar

| Category | Fit Variation | $\Delta |y_{CP}|$ (%) |
|--------------------|---|-----------|
| Fit Region | width of sigBox | 0.057 |
| | position of sigBox | 0.005 |
| Signal | KKUnet σ_t signal PDF | 0.022 |
| | Mistag Fraction | 0.0 |
| | D^0 Fraction in KKUnet | 0.001 |
| Charm | lifetimes | 0.042 |
| | yields | 0.016 |
| | yields | 0.043 |
| Combinatorial | weighting parameter | 0.004 |
| | PDF from sidebands | 0.066 |
| Selection | σ_t cut | 0.052 |
| | adjudication | 0.028 |
| | Total Systematic Error | 0.124 |

$y_{CP} = (7.2 \pm 1.8\text{ (stat)} \pm 1.2\text{ (syst)}) \times 10^{-3}$
Conclusion

• Preliminary full data results from BaBar and Belle for y_{CP}
• Impressive initial results from LHC-b; likely to dominate in the next few years
• Desperate for theory guidance on what we are learning with the observations of mixing and CP-violation in charm.
HFAG Average March 2012

- HFAG Average = \((10.6 \pm 2.1) \times 10^{-3}\)
- Includes LHC-b

- Preliminary BaBar = \((7.2 \pm 2.2) \times 10^{-3}\)
- Preliminary Belle = \((11.1 \pm 2.5) \times 10^{-3}\)