b→sγ result from Belle

Cholong Lim
Yonsei University
cholonglim@gmail.com
• Total decay rate and CP Asymmetry
 • prove for the New Physics e.g. charged Higgs, SUSY

• Differential decay rate
 • photon as a messenger of the dynamics of the b-quark properties
Analysis Methods

• Fully Inclusive
 • measure the isolated photon only, small systematic bias
 • large statistics but large continuum background
 • smeared E_γ by B-boost
 • lepton tag
 • useful for continuum suppression and flavor tagging

• Hadronic Tag
 • fully reconstruct a hadronic B decay, measure the photon in the rest
 • continuum background is suppressed but very low efficiency

• Sum of Exclusive
 • fully reconstruct as many modes as possible
 • clearly measured E_γ and high efficiency
 • systematic bias due to missing modes
Fully Inclusive & Lepton Tag

World best measurement at Belle
PRL 103, 241801 (2009)
Fully Inclusive & Lepton tag

• Study with two method; fully inclusive & lepton tag.
• Find isolated photon in the EM calorimeter.
• High energy photon with $E_{c.m.s} > 1.4$ GeV.
• Veto γ from π^0, η and Bhabha and suppress continuum with event topology
• Estimate continuum using OFF resonance data
• Estimate B decays using corrected MC sample; $B \rightarrow X(\pi^0/\eta)$
Continuum Subtraction

Continuum subtraction is performed considering difference
- b/w ON and OFF resonance for luminosity (α),
- efficiency of hadronic event (β) and of signal event (γ),
- photon multiplicity (F_N),
- photon mean energy (F_E).

$$N^{B\bar{B}}(E^\gamma_{c.m.s.}) = N^{ON}(E^\gamma_{c.m.s.(ON)}) - \alpha \cdot \beta \cdot \gamma \cdot F_N \cdot N^{OFF}(F_E E^\gamma_{c.m.s.(OFF)})$$

$$\alpha = \frac{L_{ON} dt}{L_{OFF} dt} \cdot \frac{s_{OFF}}{s_{ON}} = 8.7577(\pm 0.3\%)$$

$$\beta = \frac{\varepsilon^{ON}_{Hadronic}}{\varepsilon^{OFF}_{Hadronic}} = -0.9986 \pm 0.0001$$

$$\gamma = \frac{\varepsilon^{ON}_{B \to X_s \gamma}}{\varepsilon^{OFF}_{B \to X_s \gamma}}$$

$$F_N = 1.0009$$
(difference in photon multiplicity)

$$F_E = 1.0036$$
(difference in photon mean energy)
Efficiency Corrections

- Selection efficiency in MC and data from the control sample
 - e.g. π^0 veto efficiency in a sample of partially reconstructed $D^* \rightarrow D \rightarrow K\pi\pi^0$, $\pi^0 \rightarrow \gamma\gamma$
• Corrected raw photon energy spectrum

\[R(E_{\gamma}^{\text{true}}) = \frac{N_{\text{rec}}}{\varepsilon_{\text{sel}}} \]

Unfolding Procedure

\[M(E_{\gamma}^{\text{true}}) = A^{-1} R(E_{\gamma}^{\text{meas}}) \]

Detection Efficiency

\[T(E_{\gamma}^{\text{true}}) = \frac{M_{\text{unfolded}}}{\varepsilon_{\text{det}}} \]
Branching Fraction (Exp.)

Belle no-tag + lepton-tag for $E\gamma > 1.7$ GeV

$\mathcal{B}(B \rightarrow X_s \gamma) = (345 \pm 15 \pm 40) \times 10^{-6}$

If we use $E\gamma > 1.8$ GeV result, Belle’s no-tag + lepton-tag result becomes $(347 \pm 13 \pm 26 \pm 2) \times 10^{-6}$
Hadronic Tag

Comparison with BaBar
PRD 77, 051103(R) (2008)
no Belle result so far
Hadronic Tag Method

Tag side
Tag B is fully reconstructed in a hadronic mode

Signal side
Search for an isolated photon

• Advantage
 · small continuum background extracted from fit
 · information of B flavor, charge and momentum \(\rightarrow \) enables to study asymmetries

• Disadvantage
 · low efficiency of fully reconstructed B (tag efficiency \(\sim 0.45\% \))
Improved Hadronic Tag at Belle

• More decay modes.
• Event selection by NeuroBayes neural net program.
• Efficiency and purity can be adjusted by NeuroBayes output.
• Easy to include the continuum suppression in the candidate selection process.
• Already used in new Belle $B \to \tau \nu$ and other studies.

Efficiency and purity are decided based on the NeuroBayes output cut

Improved efficiency by a factor of ~ 2 at the same purity level

NIMA 654, 432 (2011)
Analysis Strategy

• Hadronic tag with |ΔE|<0.06 GeV and good tag quality

• Select good photon (optimized for E_γ in 1.8-2.0 GeV)
 • $1.4< E_\gamma < 2.6$ GeV, π^0/η veto, off-timing QED background veto and E9/E25

• Background calibration for subtraction
 • π^0/η: MC/data difference is measured as a function of $p^*(\pi^0/\eta)$
 • others: examine the contribution in MC

• Raw signal yield by M_{bc} fit

• Unfold the spectrum

• Measure the differential branching fraction
π⁰ Calibration

- Comparison of normalized yields in MC and data with \(B \rightarrow X \pi^0 \)
- Estimate \(B \) decays using calibrated MC sample;

\[\text{Graph} \]

Data

MC

\[\text{Graph} \]

\[\text{Graph} \]
$\mathcal{L} = 210/fb$

$\mathcal{B}(B \to X_s \gamma, E_\gamma > 1.9 \text{ GeV})$

$= (3.66 \pm 0.85 \pm 0.60) \times 10^{-4}$

$\mathcal{L} = 710/fb$

Improved result is expected with new hadronic tag algorithm on full Belle data set.

At Belle II, hadronic tag is a promising method, since it will be still statistics dominated.
Summary

• $b \rightarrow s \gamma$ study
 - interesting topic at B factory; beyond Standard Model
 - world best measurement at Belle
 - prospect for the hadronic tag analysis

• Expectation
 - better results with improved analysis tools and increased data sample soon
 - more precise measurement at Belle II