Inclusive B decays and exclusive radiative decays by Belle

Yutaro Sato
for the Belle Collaboration (Nagoya University)

11 Sep 2014
Introduction

- Electroweak/radiative B decays are sensitive to new physics.
 - New particles may enter in the loop and alter physical observables.

$\mathbf{b \to s \gamma (b \to d \gamma)}$

$\mathbf{b \to s l^+ l^-}$

- In this talk:
 1. $\mathcal{B}(B \to X_s \gamma)$ with sum-of-exclusives
 2. $A_{CP}(B \to X_{s+d} \gamma)$
 3. $A_{FB}(B \to X_s l^+ l^-)$ with sum-of-exclusives

- All results are based on the complete $\Upsilon(4S)$ Belle data samples of 711 fb$^{-1}$.

<table>
<thead>
<tr>
<th>Time [year]</th>
<th>Integrate luminosity [fb$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>2002</td>
<td>600</td>
</tr>
<tr>
<td>2004</td>
<td>1000</td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>
$\mathcal{B} (B \rightarrow X_s \gamma)$ with sum of exclusives

- X_s reconstruction: **sum-of-exclusives approach**
 - As many X_s final states as possible are reconstructed and summed to get the inclusive branching fraction.

- 38 exclusive X_s states (~70% of total)

Bkg suppression

- Continuum $e^+ e^- \rightarrow qq$ ($q = u, d, s, c$)
 - Suppressed using a Neural Network (Topological and kinematic variables)
- Peaking bkg from D decays: $B \rightarrow D^{(*)} \rightarrow \rho^+ \rightarrow \pi^+ \pi^0$
Signal extraction

- Branching fraction is extracted by M_{bc} fit in 19 M_{Xs} bins

 - $M_{bc} \equiv \sqrt{E_{\text{beam}}^2 - |\vec{p}_B|^2}$

 - $0.6 < M_{Xs} < 2.8$ GeV/c2
Result of $\mathcal{B}(B \to X_s \gamma)$

- With $M_{X_s} < 2.8$ GeV/c2 ($E_\gamma > 1.9$ GeV)

$$\mathcal{B}(B \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$$

- Calibration of X_s hadronization
 - Signal efficiency depends on model.
 - Pythia parameters are tuned by comparing data with MC.

- Missing modes uncertainty
 - Estimated using different Pythia parameters

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B\bar{B}$ counting</td>
<td>1.37</td>
</tr>
<tr>
<td>Detector response</td>
<td>2.98</td>
</tr>
<tr>
<td>Background rejection</td>
<td>3.38</td>
</tr>
<tr>
<td>M_{bc} PDF</td>
<td>5.06</td>
</tr>
<tr>
<td>Hadronization model</td>
<td>6.66</td>
</tr>
<tr>
<td>Missing mode</td>
<td>1.59</td>
</tr>
<tr>
<td>Total</td>
<td>9.3</td>
</tr>
</tbody>
</table>
• Extrapolated BF to $E_\gamma > 1.6$ GeV to compare with the SM prediction

$$\mathcal{B}(B \to X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4} \ (E_\gamma > 1.6 \text{ GeV})$$ \textbf{Preliminary}

– Consistent with the SM prediction within 1.3σ.

• $\mathcal{B}(B \to X_s \gamma)_{\text{SM}} = (3.15 \pm 0.23) \times 10^{-4}$ with NNLL ($E_\gamma > 1.6$ GeV)

@ PRL 98, 022002 (2007)

Constraint to M_{H^+} v.s. $\tan \beta$

Only from this result

Most precise result with sum-of-exclusives!
\[A_{CP}(B \rightarrow X_{s+d}\gamma) = \frac{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) - \Gamma(B \rightarrow X_{s+d}\gamma)}{\Gamma(\bar{B} \rightarrow X_{s+d}\gamma) + \Gamma(B \rightarrow X_{s+d}\gamma)} \]

- Cancellation due to unitarity,
- Negligible theory error

Inclusive analysis

- Only reconstruct photon and charged lepton for tagging.
 - \(1.7 < E_m^* < 2.8\) GeV
 - \(1.10 < p_l^* < 2.25\) GeV/c

\[A_{CP} = \frac{N^+ - N^-}{N^+ + N^-} \] (using tag-lepton)
Background

Background suppression

- Mass veto for $\pi^0(\eta) \rightarrow \gamma\gamma$
- BDT for continuum suppression

Background calibration

- Topological variables
- Kinematic variables
- Isolation and calorimeter variables for γ

- π^0/η bkg is calibrated from MC with correction factors in momentum bins.
- Correction factor is estimated from $B \rightarrow X\pi^0/\eta$ in data and MC.
 - $C_i = \frac{N_{on} - \alpha_{off} \cdot N_{off}}{N_{MC}}$

Signal vs. Background

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>21.2%</td>
</tr>
<tr>
<td>$\pi^0 \rightarrow \gamma\gamma$</td>
<td>49.5%</td>
</tr>
<tr>
<td>$\eta \rightarrow \gamma\gamma$</td>
<td>7.9%</td>
</tr>
<tr>
<td>Other BB</td>
<td>9.0%</td>
</tr>
<tr>
<td>Continuum</td>
<td>12.4%</td>
</tr>
</tbody>
</table>

2nd photon is lost in $1.7 < E_\gamma^* < 2.8$ GeV

Off-resonance data, 90 fb$^{-1}$, below Y(4S)

$2.0 < p_\eta < 2.1$ GeV/c
Wrong tag fraction and correction

Wrong tag factors:

- $A_{CP}^{true} = \frac{1}{1-2w} A_{CP}^{meas}$
 - $B\bar{B}$ mixing
 - lepton from D decays
 - K/π miss-identified as lepton

<table>
<thead>
<tr>
<th>factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{oscilation}$</td>
<td>0.0913 ± 0.0015</td>
</tr>
<tr>
<td>$w_{2nd-lepton}$</td>
<td>0.0431 ± 0.0036</td>
</tr>
<tr>
<td>w_{misID}</td>
<td>0.0069 ± 0.0034</td>
</tr>
<tr>
<td>$w_{(total)}$</td>
<td>0.1413 ± 0.0052</td>
</tr>
</tbody>
</table>

Bias

- Asymmetry from detector
 - Lepton ID: $A_{det} = (0.11 \pm 0.07)\%$
 - Tracking: $A_{det} = (-0.01 \pm 0.21)\%$

- Asymmetry from BB bkg: $A_{bkg} = (-0.14 \pm 0.78)\%$

→ Measured A_{CP}^{meas} is corrected for wrong tags and bias.
Photon spectrum in $B \rightarrow X_{s+d} \gamma$

- Measure as function of E_γ threshold.
 - Statistically dominated
 - Leading systematic comes from BB bkg asymmetry
- Stable for different thresholds
Result of $A_{CP}(B \rightarrow X_{s+d}\gamma)$

- $A_{CP}(B \rightarrow X_{s+d}\gamma) = (2.23 \pm 4.02 \pm 0.78\%)$
 - Consistent with SM.
 - Most precise measurement of A_{CP}.
$A_{FB}(B \rightarrow X_s l^+ l^-)$ with sum of exclusive

- Forward-backward Asymmetry (A_{FB}) can be expressed with three Wilson coefficients (C_7, C_9, C_{10}).

\[A_{FB} \equiv \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)} \propto -\text{Re} \left[\left(2C_\text{eff}^7 + \frac{q^2}{m_b^2} C_\text{eff}^9 \right) C^{*}_{10} \right] \]

- l^+l^-: e^+e^- or $\mu^+\mu^-$

- $X_s := K^\pm/K_S + \text{up to } 4\pi \text{ (at most } 1\pi^0 \text{)}$

 \[
 \begin{align*}
 \begin{bmatrix} K \\ K \pi \end{bmatrix} & : K, K_S \\
 \begin{bmatrix} K\pi \\ K\pi \end{bmatrix} & : K\pi, K_S\pi, K\pi^0, K_S\pi^0 \\
 \begin{bmatrix} K2\pi \end{bmatrix} & : K2\pi, K_S2\pi, K\pi\pi^0, K_S\pi\pi^0 \\
 \begin{bmatrix} K3\pi \end{bmatrix} & : K3\pi, K_S3\pi, K2\pi\pi^0, K_S2\pi\pi^0 \\
 \begin{bmatrix} K4\pi \end{bmatrix} & : K4\pi, K_S4\pi, K3\pi\pi^0, K_S3\pi\pi^0
 \end{align*}
 \]

- $M_{X_s} < 2.0 \text{ GeV/c}^2$

- 10 flavor specific states for A_{FB} measurement ($\sim 50\%$ of total).
- Neural network for suppression of continuum and BB bkg.
- Veto Charmonium: J/Ψ and $\Psi(2S)$.
Signal extraction

- Divide data into $4q^2$ regions to perform a fit.
- Correct A_{FB}^{raw} to A_{FB}^{true}.

\[A_{FB}^{true} = \alpha^{\mu\mu} \times A_{FB}^{raw,\mu\mu} = \alpha^{ee} \times \beta \times A_{FB}^{raw,ee} \]

\(\alpha \): scale factor due to rec. efficiency
\(\beta \): correction due to different Charmonium veto range.

- \(\alpha \) is derived using MC with various sets of C_7, C_9, C_{10}

\[B \rightarrow X_s e^+ e^+ \]

\[B \rightarrow X_s \mu^+ \mu^+ \]

Rec. Eff.
Fitting for $A_{FB}(B \rightarrow X_s l^+ l^-)$

- Unbinned maximum likelihood fit to M_{bc} for each q^2 bin.

 Sum of all q^2 bin

- Dominant systematics
 - α correction, peaking bkg.

\[
\begin{align*}
B \rightarrow X_s e^+ e^- & \quad \text{forward} \\
B \rightarrow X_s e^+ e^- & \quad \text{backward} \\
B \rightarrow X_s \mu^+ \mu^- & \quad \text{forward} \\
B \rightarrow X_s \mu^+ \mu^- & \quad \text{backward}
\end{align*}
\]

- Total
 - Signal + cross feed
 - Non-peaking B.G.
 - Peaking B.G.

1. Leakage from $B \rightarrow J/\Psi (\Psi(2S)) X_s$ veto.
2. Double miss ID from $B \rightarrow D^{(*)} n\pi$
3. Swapped mis ID in $B \rightarrow J/\Psi (\Psi(2S)) X_s$
Result of $A_{FB}(B \to X_S l^+ l^-)$

- A_{FB} are consistent with the SM.
 - The deviation of the 1$^{\text{st}}$ bin is 1.8σ.
 - Exclude $A_{FB} < 0$ at $q^2 > 10.2$ GeV2/c2 at 2.3σ.
- First measurement of inclusive A_{FB} with sum-of-exclusives

![Graph showing the result of A_{FB} vs. q^2]

arXiv:1402.7134; submitted to PRL
Summary

- $\mathcal{B}(B \to X_s \gamma)$ with sum-of-exclusives
 - Extrapolated BF to $E_\gamma > 1.6$ GeV
 $$\mathcal{B}(B \to X_s \gamma) = (3.74 \pm 0.18 \pm 0.35) \times 10^{-4}$$
 - Most precise result with sum-of-exclusives

- $A_{CP}(B \to X_{s+d} \gamma)$
 - $A_{CP}(B \to X_{s+d} \gamma) = (2.23 \pm 4.02 \pm 0.78)\%$
 - Most precise result.

- $A_{FB}(B \to X_s l^+ l^-)$ with sum-of-exclusives
 - Exclude $A_{FB} < 0$ at $q^2 > 10.2$ GeV2/c2 at 2.3σ.
 - First measurement of inclusive A_{FB} with sum-of-exclusives