Study of fragmentation functions in $e^+ e^-$ annihilation process at Belle

Marko Bračko
University of Maribor, Maribor, Slovenia
&
J. Stefan Institute, Ljubljana, Slovenia

on behalf of the Belle Collaboration
List of topics

- Introduction
 - Motivation
 - Experimental set-up

- Results
 - Pion/Kaon cross-sections
 - Di-hadron asymmetries
 - Pion/Kaon Collins fragmentation functions

- Prospects
 - Further analyses
 - Future: Belle II @ SuperKEKB

- Summary and conclusions
Motivation for FF studies

How do quasi-free partons fragment into confined hadrons?

- Does spin play a role? Flavour dependence?
- What about transverse momentum distribution (TMD) and its evolution?

- Fragmentation functions (FF's) describe the hadronisation phenomenon: $q/g \rightarrow h$

 $D_q^h(z, Q^2)$

 z: fractional momentum of the parent quark carried by the hadron

- FF's are needed in the global analysis of the nucleon structure, e.g. the spin structure (from semi-inclusive Deep-Inelastic-Scattering (SIDIS) and pp collisions)

- FF's are intrinsically linked to QCD confinement → provide access to non-perturbative QCD quantities

- FF's can not be computed on the lattice due to the non-inclusive final states
In e^+e^- annihilation:

\[Q = \sqrt{s} \]
\[z = \frac{2E_h}{Q} \approx \frac{E_h}{E_q} \]

- e^+e^- cleanest way to access FF's
- B factories (Belle, BaBar)
 - close in energy to SIDIS (100 GeV2 vs. 2-3 GeV2)
 - Large integrated luminosity, high z reach

CMS energy (mainly):

\[\sqrt{s} = M_{Y(4S)}c^2 \approx 10.58\text{GeV} \]
Experimental set-up: Belle @ KEKB

In e^+e^- annihilation:

\[Q = \sqrt{s} \]
\[z = \frac{2E_h}{Q} \approx \frac{E_h}{E_q} \]

- e^+e^- cleanest way to access FF's

- B factories (Belle, BaBar)
 - close in energy to SIDIS (100 GeV2 vs. 2-3 GeV2)
 - Large integrated luminosity, high z reach

\[\text{Rate}_i = \text{Lumi.} \times \sigma_i \]

Resonance; E_{CM}(GeV); Integr. lumi.

- $\Upsilon(1S)$: 9.46, 5.75 fb$^{-1}$
- $\Upsilon(2S)$: 10.02, 25 fb$^{-1}$
- $\Upsilon(3S)$: 10.36, 2.95 fb$^{-1}$
- $\Upsilon(4S)$: 10.58, 710.5 fb$^{-1}$
- $\Upsilon(5S)$: 10.87, 121.4 fb$^{-1}$

Off resonance/scan:
- ~100 fb$^{-1}$

\[\sim 2 \times 10^9 \text{ q\bar{q} pairs} \]

\[e^+e^- \rightarrow \pi^\pm X \text{ production} \]
Unpolarised FF's from single hadron production

\[z = \frac{2E_h}{\sqrt{s}}, \quad \sqrt{s} = 10.52 \text{ GeV} \]

- Process studied:
 \[e^+ e^- \rightarrow h X \]
- Single-hadron cross-sections at leading order (LO) in \(\alpha_s \) is related to the sum of unpolarised fragmentation functions from quark and anti-quark side
 \[\sigma(e^+ e^- \rightarrow hX) \propto \sum_q e_q^2 \left(D_{1,q}^h(z) + D_{1,q}^h(\bar{z}) \right) \]
- Gluon FF's accessible only through higher-order processes or QCD evolution

\[\text{LO} \quad F^h(z, s) = \sum_q e_q^2 [D_q^h(z) + D_{q'}^h(\bar{z})] \]
\[\sum_q e_q^2 \]
\[\text{NLO} \quad F^h(z, s) = \sum_i \int_{z'}^1 \frac{dz'}{z'} C_i(s; z', \alpha_s) D_q^h(z) \]
Cross-sections for identified π^\pm/K^\pm

\[z = \frac{2E_h}{\sqrt{s}}, \quad \sqrt{s} = 10.52 \text{ GeV} \]

Initial/Final State Radiation:
- Exclude events where $E_{\text{CMS}}/2$ changes by more than 0.5%
- Large at low z, correction based on MC

\[\frac{d\sigma_i}{dz} = \frac{1}{L_{\text{tot}}} \epsilon_{\text{joint}}(z) \epsilon^{i}_{\text{ISR/FSR}}(z) S_{zzm}^{-1} \epsilon^{i}_{\text{imp}}(zm) P_{ij}^{-1} N_{ij,raw}(zm) \]

- Smearing Corrections

- Correct for acceptance, $\tau\tau$, 2γ, decay in flight, < 10%

Results used in recent global FF fit (PRD 91, 014035 (2015)):
- Together with other new data substantial improvement in uncertainties
- Good description of B-Factories data

\[\pi^+ (\text{Statistical, Systematic Uncertainties}) \]
\[K^+ (\text{Statistical, Systematic Uncertainties}) \]
Di-hadron fragmentation

- Single inclusive hadron multiplicities \((e^+e^- \rightarrow hX)\) sum over all available flavours and quarks and antiquarks:

\[
d\sigma(e^+e^- \rightarrow hX)/dz \propto \sum_q e_q^2 (D_{1,q}^h(z, Q^2) + D_{1,q}^\bar{h}(z, Q^2))
\]

- Flavour separation and distinction between quark and antiquark fragmentation, and in particular distinction between favoured (e.g. \(u \rightarrow \pi^+\)) and disfavoured (\(\bar{u} \rightarrow \pi^+\)) fragmentation would be important.

- **Idea:** Use a di-hadron fragmentation, preferably from opposite hemispheres and access favoured and disfavoured combinations, e.g. for \(\pi\pi\):

\[
u\bar{u} \rightarrow \pi^+\pi^- X \propto D_{u,fav}^\pi(z_1, Q^2) \cdot D_{u,fav}^{\bar{\pi}}(z_2, Q^2) + D_{u,dis}^\pi(z_1, Q^2) \cdot D_{u,dis}^{\bar{\pi}}(z_2, Q^2)
\]

\[
u\bar{u} \rightarrow \pi^+\pi^+ X \propto D_{u,fav}^\pi(z_1, Q^2) \cdot D_{u,dis}^{\pi^+}(z_2, Q^2) + D_{u,dis}^{\pi}(z_1, Q^2) \cdot D_{u,fav}^{\pi^+}(z_2, Q^2)
\]

NB: This is strictly valid only at LO and for nearly back-to-back hadrons
Cross-sections for a di-hadron production are sensitive to favoured and disfavoured fragmentation depending on charges and hadron types:

- Generally look at 4 x 4 hadron combinations (π⁺, π⁻, K⁺, K⁻) and keep them separated:
 - 6 independent yields

- Use 3 hemisphere combinations (wrt to Thrust axis):
 - same hemisphere (thrust T >0.8)
 - opposite hemisphere (thrust T >0.8)
 - any combination (no thrust selection)

- Use 16 x 16 (z₁ x z₂) binning within [0.2 , 1] for each z value
<table>
<thead>
<tr>
<th>Correction</th>
<th>Method</th>
<th>Systematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID mis-identification</td>
<td>PID matrices (5x5 for $\cos(\theta_{\text{lab}})$ and p_{lab})</td>
<td>MC sampling of inverted matrix element uncertainties</td>
</tr>
<tr>
<td>Momentum smearing</td>
<td>MC based smearing matrices (256x256), SVD unfold</td>
<td>SVD unfolding vs. analytically inverted matrix, reorganized binning, MC statistics</td>
</tr>
<tr>
<td>Non-qqbar BG removal</td>
<td>$\mu\mu$, $ee\mu\mu$, $eeee$; 2γ processes; τ MC subtraction</td>
<td>Variation of size, MC statistics</td>
</tr>
<tr>
<td>Acceptance I (cut efficiency)</td>
<td>Reconstructed In barrel vs. udsc generated in barrel</td>
<td>MC statistics</td>
</tr>
<tr>
<td>Acceptance II (outside barrel)</td>
<td>$udsc$ MC sample for outside barrel region</td>
<td>MC statistics</td>
</tr>
<tr>
<td>Weak decay removal (optional)</td>
<td>$udcs$ check of MC event record for weak decays</td>
<td>Compare to other Pythia settings</td>
</tr>
<tr>
<td>Acceptance III (large $</td>
<td>\cos\theta</td>
<td>$)</td>
</tr>
<tr>
<td>ISR correction</td>
<td>Keep only event fraction with $E_{\text{cm}} > 0.995 \sqrt{s}$</td>
<td></td>
</tr>
</tbody>
</table>
Different. σ: no hemisphere/thrust cut
Di-hadrons: results for pion pairs

$\pi^+\pi^+$ comparable to $\pi^+\pi^-$ at low z, decreasing towards high z:

- Favoured and disfavoured fragmentation similar at low z
- Disfavoured much smaller at high z

s ratio: no hemisphere/thrust cut
MC generator comparison: Low z dominates integral: → Well defined, all tunes agree

High z not well measured, especially at Belle energies: → large spread in tunes

Default Pythia settings and current Belle setting with good agreement

Different. σ: diagonal z_1, z_2 bins only

\begin{align*}
\sigma(z_1, z_2) &= \frac{d\sigma}{dz_1 dz_2} \\
\end{align*}
σ ratio: diagonal z_1, z_2 bins only

MC generator comparison:
Low z dominates integral:
→ Well defined, all tunes agree

High z not well measured, especially at Belle energies:
→ large spread in tunes

Default Pythia settings and current Belle setting with good agreement
Goal:
Study the correlation between the transverse spin of the quark and the transverse momentum of the produced hadron

\[\phi_1 + \phi_2 \text{ method:} \]
hadron azimuthal angles with respect to the $q\bar{q}$ axis proxy

\[\phi_0 \text{ method:} \]
hadron 1 azimuthal angle with respect to hadron 2

Collins fragmentation functions

\[R_{12}^{U/L} = \frac{N(\phi_1 + \phi_2)}{\langle N_{12} \rangle} \]
Normalised rates for Unlike-/Like-sign hadron pairs

\[R_0^{U/L} = \frac{N(2\phi_0)}{\langle N_0 \rangle} \]
Collins FF – first result

Results based on double ratios:

Red points:
\[\cos(\Phi_1 + \Phi_2) \] for moment of
Unlike-sign pion pairs over
Like-sign pion pair ratio: parameter \(A_{UL} \)

Green points:
\[\cos(\Phi_1 + \Phi_2) \] for moment of
Unlike-sign pion pairs over
any Charged pion pair ratio: parameter \(A_{UC} \)

Collins fragmentation is large effect
Consistent with SIDIS indication of sign change between favoured and disfavoured Collins FF

Results used in global fit of Collins FF and transversity:
PRD **75**, 054032 (2007),
and more recently:
Kang, Prokudin, Sun and Yuan, arXiv:1505.05589

Belle results:
PRL **96**, 232002 (2006);
PRD **78**, 032011 (2008),
Err. PRD **86**, 039905 (2012)
Double ratios for K/\pi pairs – prelim.

- First pion-kaon and kaon-kaon Collins results.
- Pion-pions consistent with previous results.
- Pion-pion and kaon-kaon of similar shape and magnitude.
- Pion-kaon substantially smaller.

\[\text{pi}^0/\text{eta-charged pion combinations will be ready to show soon as well!} \]
Asymmetries (integrated over z) increasing with transverse momentum.

Belle Preliminary

π^0/η-charged pion combinations will be ready to show soon as well!
Future: Belle II @ SuperKEKB

- Goal: Extremely high luminosity $\sim 10^{36} \text{ cm}^{-2}\text{s}^{-1}$ (~40x KEK) → 50-times Belle data
- Upgrades of Accelerator (Nano-beams + Higher Currents) and Detector (improved Vtx, PID, calorimetry, higher rates, modern DAQ)
- Potential for fragmentation analyses: Better PID, vertexing can help distinguish between charm and light quark events.

Commissioning of accelerator starts in 2016, data-taking in 2018
Summary and conclusions

- Unpolarised single-hadron cross sections extracted at Belle and already used in global FF fits

- First di-hadron + single proton cross sections from e^+e^- extracted, soon to be submitted
 - Access to disfavoured fragmentation via ordering of pion and kaon pairs

- Transverse momentum dependent FF analysis is ongoing
 - Collins asymmetries for pions used in global transversity analysis
 - New Kaon related Collins asymmetries preliminary,
 - π^0 and eta combinations to follow soon

- Future prospects: Belle II