b\rightarrow s\gamma \text{ Exclusive Decays}

Akimasa Ishikawa
(Tohoku University)
Evidence for $b \rightarrow s\gamma$

- CLEO found an evidence for $b \rightarrow s\gamma$ process using exclusive $B \rightarrow K^*(892)\gamma$ decays in 1993 with only 1.38fb^{-1} data on $Y(4S)$.

More than 20 years has passed from the evidence and now....
Now we are here

- Now we (Babar and Belle) have more than \(800\) times larger data of \(1144\text{fb}^{-1}\) \((433\text{fb}^{-1} + 711\text{fb}^{-1})\) on \(Y(4S)\) than data with which CLEO found an evidence for \(b \rightarrow s\gamma\).

- Further, LHCb collected \(3\text{fb}^{-1}\) at \(7\text{TeV}\) and \(8\text{TeV}\) at \(pp\) collisions.
 - \(\sigma_{bb} = 7.7\mu\text{b}\) for \(p_T^{bb} > 5\text{GeV}\) and \(2.5 < \eta < 4.0\) at \(7\text{TeV}\)

Integrated luminosity of B factories

Copious numbers of B hadrons are available.
Ideal tool to search for new physics

• Exclusive $b \to s \gamma$ decays can be used to measure
 – Branching fraction (BF)
 • Fragmentation of X_s
 – Direct CP Violation (A_{CP})
 • To Search for New phase
 – Time dependent CP Violation (S_{CP})
 • For $B^0 \to f_{CP} \gamma$ modes
 • to search for right handed current/new phase
 • CPV is suppressed by $O(m_s/m_b)$
 – Isospin Violation (Δ_{0+} or A_I)
 • Spectator dependent operator
 – Up-Down Asymmetry (A_{UD})
 • For $B \to K_1 \gamma \to K \pi \pi \gamma$
 • To search for right handed current
 • New physics makes $|A_{UD}|$ value smaller than the SM
 – Photon Polarization from conversion (no groups measure yet)
 • To search for right handed current
Observed Exclusive Decays

- Now we observed:
 - $B \rightarrow K^*(892)\gamma$ in 1993
 - $B \rightarrow K_2^*(1430)\gamma$ in 2000
 - $B \rightarrow K\phi\gamma$ in 2004
 - $B \rightarrow K\eta\gamma$ in 2005
 - $B \rightarrow K_1(1270)\gamma$ in 2005
 - $B \rightarrow p\Lambda\gamma$ in 2007
 - $B \rightarrow K\eta'\gamma$ in 2010

Only 40% are exclusively known!
Direct CPV

- In the SM, $b \rightarrow s\gamma$ process is dominated by single EW penguin diagram, and further weak phase in V_{ts} is suppressed by $O(\lambda^2)$, so direct CPV in $b \rightarrow s\gamma$ is small.
 - E.g. $A_{CP}(B \rightarrow K^*(892)\gamma) = -0.6 \pm 0.4\%$

- If new physics contribution to $b \rightarrow s\gamma$ has sizable amplitude and weak (+strong) phase, direct CPV could appear.

- Is the difference of direct CPV btw B^0 and B^+ interesting/sensitive NP also for exclusive decays?
 - Benzke, Lee, Neuber and Paz propose it for inclusive decays as a sensitive probe for new physics.
Direct CPV in $B \rightarrow K^*(892)\gamma$

- LHCb reported A_{CP} with 1fb$^{-1}$
 - Only with $K^0 \rightarrow K^+\pi^-$
- W.A. consistent with null asymmetry predicted in the SM
 - $-0.6 \pm 0.4 \%$

- exp error 3times larger than theo
 - LHCb $1fb^{-1} \rightarrow 3fb^{-1}$
 - Belle $78fb^{-1} \rightarrow 711fb^{-1}$

<table>
<thead>
<tr>
<th>A_{CP}</th>
<th>B^0</th>
<th>B^+</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babar 347fb$^{-1}$</td>
<td>$-1.6 \pm 2.2 \pm 0.7 %$</td>
<td>$1.8 \pm 2.8 \pm 0.7 %$</td>
<td>$-0.3 \pm 1.7 \pm 0.7 %$</td>
</tr>
<tr>
<td>Belle 78fb$^{-1}$</td>
<td>n.a.</td>
<td>n.a.</td>
<td>$-1.5 \pm 4.5 \pm 1.2 %$</td>
</tr>
<tr>
<td>LHCb 1fb$^{-1}$</td>
<td>$0.8 \pm 1.7 \pm 0.9 %$</td>
<td>n.a.</td>
<td>$0.8 \pm 1.7 \pm 0.9 %$</td>
</tr>
<tr>
<td>Average</td>
<td>$0.7 \pm 1.9 %$</td>
<td>$1.8 \pm 2.9 %$</td>
<td>$0.1 \pm 1.3 %$</td>
</tr>
</tbody>
</table>
Isospin Violation

• Isospin Violation can be calculated in the SM.
\[\Delta_{0-} = \frac{\Gamma(\bar{B}^0 \to \bar{K}^*0\gamma) - \Gamma(B^- \to K^-\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^*0\gamma) + \Gamma(B^- \to K^-\gamma)} \]

 – \(+5.0 \sim +10 \% \) \quad Kagan, Neubert

 – \(+2.7 \pm 0.8 \% \) \quad Matsumori, Sanda, Keum

• If new physics has isospin breaking contributions, such as spectator dependent diagrams, \(\Delta_{0-} \) could be deviated from the SM value

 – Even sign of Isospin Violation flips
Isospin Violation in $B \rightarrow K^* (892) \gamma$

- Babar and Belle measured isospin violation
 - thanks to high reconstruction efficiency for K_s and π^0 involved modes at e^+e^- machine

- Consistent with SM Predictions
 - $+5.0 \sim +10 \%$ Kagan, Neubert
 - $+2.7 \pm 0.8 \%$ Matsumori, Sanda, Keum

<table>
<thead>
<tr>
<th></th>
<th>Δ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babar 347fb$^{-1}$</td>
<td>$6.6 \pm 2.1 \pm 2.2 %$</td>
</tr>
<tr>
<td>Belle 78fb$^{-1}$</td>
<td>$1.2 \pm 4.4 \pm 2.6 %$</td>
</tr>
<tr>
<td>Average</td>
<td>$5.2 \pm 2.6 %$</td>
</tr>
</tbody>
</table>
Time dependent CPV

- In the SM, photon emitted from b is predominantly left handed. Time dependent CPV in $B \to f_{CP} \gamma$ is small due to small interference.

$$S^{SM} = -\sin 2\phi_1 \frac{m_s}{m_b} [2 + \mathcal{O}(\alpha_s)] + S^{SM, s\gamma g}$$

- If new physics has right handed current, time dependent CPV emerges by interference.
- Gluon emission $b \to s\gamma g$ processes make S^{SM} larger than naive calculation?

$$S^{SM} \sim O(0.1)$$
$$|S^{SM}| \sim 8\%$$

$$S^\text{SM}_{PQCD} = -(3.5 \pm 1.7)\%$$
$$S^{SM} = -0.022 \pm 0.015^{+0.01}_{-0.01}$$

References:
- Atwood, Gronau, Soni
- Atwood, Gershon, Hazumi, Soni
- Grinstein, Grossman, Ligeti, Pirjol
- Grinstein, Pirjol
- Matsumori, Sanda
- Ball, Zwicky
Time Dependent CPV in $B \rightarrow K\eta\gamma$

- Recently Belle reported measurement of time dependent CPV in $B \rightarrow K\eta\gamma$ with full data.
- Measured values are out of physical boundary but consistent with null CPV.

$$S_{CP} = -1.32 \pm 0.77(\text{stat.}) \pm 0.36(\text{syst.})$$
$$A_{CP} = -0.48 \pm 0.41(\text{stat.}) \pm 0.07(\text{syst.})$$
Summary of time dependent CP Violation

- Four decay modes are used to search for time dependent CPV.
 - \(f_{CP} = K_s\pi^0(K^0), K_s\eta, K_s\rho, K_s\phi \)
- All are consistent with null with stat errors.

\[b \rightarrow s\gamma \quad S_{CP} \]

<table>
<thead>
<tr>
<th>(f_{CP})</th>
<th>Babar</th>
<th>Belle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_s\pi^0(K^0))</td>
<td>427 fb(^{-1})</td>
<td>495 fb(^{-1})</td>
</tr>
<tr>
<td>(K_s\eta)</td>
<td>427 fb(^{-1})</td>
<td>711 fb(^{-1})</td>
</tr>
<tr>
<td>(K_s\rho)</td>
<td>n.a.</td>
<td>605 fb(^{-1})</td>
</tr>
<tr>
<td>(K_s\phi)</td>
<td>n.a.</td>
<td>711 fb(^{-1})</td>
</tr>
</tbody>
</table>
Up Down Asymmetry

- Polarization of photon can be extracted from the $B \rightarrow K_1 \gamma \rightarrow (K \pi \pi) \gamma$ process by measuring up down asymmetry (photon polarization from K_1 polarization).
 - Angle θ btw photon and normal vector to K_1 decay plane.
 - Interference btw ρK and $K^*\pi$ generates imaginary part.
 - \rightarrow modes involving π^0 gives larger A_{UD}
 - Need theoretical calculation of the amplitudes

\[
A_{up-down} \left(\frac{d\Gamma(B \rightarrow K_1 \gamma)}{dsd\phi d\cos \theta} \right) = \frac{1}{(s - m_{K_1}^2)^2 + m_{K_1}^2 \Gamma_{K_1}^2} \times \left\{ \frac{1}{4} |\mathcal{F}|^2 (1 + \cos^2 \theta) + \lambda_\gamma \frac{1}{2} Im[\bar{n} \cdot (\mathcal{F} \times \mathcal{F}^*)] \cos \theta \right\}
\]

\[
K^+_{res} \rightarrow \begin{cases} K^{*+} \pi^0 \\ K^{*0} \pi^+ \\ \rho^0 K^0 \end{cases} \rightarrow K^0 \pi^+ \pi^0
\]

\[
K^0_{res} \rightarrow \begin{cases} K^{*+} \pi^- \\ K^{*0} \pi^+ \\ \rho^0 K^+ \end{cases} \rightarrow K^+ \pi^- \pi^0
\]
Up Down Asymmetry in $B \rightarrow K\pi\pi\gamma$

- LHCb observed A_{ud} with 3fb^{-1} in $B \rightarrow K^+\pi^-\pi^+\gamma$
 - With 13876 ± 153 signal events
- Measure A_{ud} with 4 bins of $M_{K\pi\pi}$
 - No resonance separation
- 5.2σ significance from null polarization
- No interpretation to photon polarization yet

<table>
<thead>
<tr>
<th></th>
<th>[1.1, 1.3]</th>
<th>[1.3, 1.4]</th>
<th>[1.4, 1.6]</th>
<th>[1.6, 1.9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>6.3±1.7</td>
<td>5.4±2.0</td>
<td>4.3±1.9</td>
<td>−4.6±1.8</td>
</tr>
<tr>
<td>c_2</td>
<td>31.6±2.2</td>
<td>27.0±2.6</td>
<td>43.1±2.3</td>
<td>28.0±2.3</td>
</tr>
<tr>
<td>c_3</td>
<td>−2.1±2.6</td>
<td>2.0±3.1</td>
<td>−5.2±2.8</td>
<td>−0.6±2.7</td>
</tr>
<tr>
<td>c_4</td>
<td>3.0±3.0</td>
<td>6.8±3.6</td>
<td>8.1±3.1</td>
<td>−6.2±3.2</td>
</tr>
<tr>
<td>A_{ud}</td>
<td>6.9±1.7</td>
<td>4.9±2.0</td>
<td>5.6±1.8</td>
<td>−4.5±1.9</td>
</tr>
</tbody>
</table>
b\rightarrow d\gamma Exclusive Decays

Given title is b\rightarrow s\gamma exclusive decays
but I would add b\rightarrow d\gamma
b→dγ Decays

• The b→dγ is suppressed by Vtd
 – About 30 times smaller than b→sγ (|Vtd/Vts|^2)
 – Need very good PID detector and EM Calorimeter

• The observables to search for NP are the same as the b→sγ but NP contribution could be different.
 – Branching fraction (BF)
 – Direct CP Violation (A_{CP})
 – Time dependent CP Violation (S_{CP})
 – Isospin Violation (\Delta_{\rho})
 – Up-Down Asymmetry (A_{UD})
 – Photon Polarization from conversion (no groups measure yet)
Observation of $b \rightarrow d\gamma$

- Belle had observed $b \rightarrow d\gamma$ process using exclusive $B \rightarrow (\rho, \omega)\gamma$ with 357fb$^{-1}$ data in 2006
\[|V_{td}/V_{ts}|, A_{CP} \text{ and } \Delta_\rho \]

- \(|V_{td}/V_{ts}| \) can be measured from the ratio of BF of \(B \to (\rho, \omega)\gamma \) and \(B \to K^*\gamma \)
 - Consistent with the SM
- Direct CPV in \(B \to \rho^+\gamma \) consistent with null
- \(\Delta_\rho \) Isospin Violation large?
 \[\Delta_\rho = \frac{\Gamma(B^- \to \rho^-\gamma)}{2\Gamma(B^0 \to \rho^0\gamma)} - 1 \]
 - 2~3\sigma deviation
 - + 4^{+14}_{-7} \%
 - − 10±6 \%
 - − 5.4±3.9 \% if \(\phi_3 = 60\text{deg} \)
 - − 4.6±7 \%

| | \(|V_{td}/V_{ts}| \) | \(A_{CP}(B^+ \to \rho^+\gamma) \) | \(\Delta_\rho \) |
|----------------|-----------------------------|---------------------------------|---------------------------|
| Babar 423fb⁻¹ | \(0.233^{+0.025+0.022}_{-0.024-0.021} \) | n.a. | \(-0.43^{+0.25}_{-0.22} \pm 0.10 \) |
| Belle 605fb⁻¹ | \(0.195^{+0.020}_{-0.019} \pm 0.015 \) | \(0.11 \pm 0.32 \pm 0.09 \) | \(-0.48^{+0.21+0.08}_{-0.19-0.09} \) |
| Average | n.a. | \(0.11 \pm 0.33 \) | \(-0.46^{+0.17}_{-0.16} \) |
Time Dependent CPV in $B^0 \rightarrow \rho^0 \gamma$

- Only Belle had measured time dependent CPV in $B^0 \rightarrow \rho^0 \gamma$
- 48 ± 14 signal events are used for fits.
 - Though signal yield is smaller than $B^0 \rightarrow K\pi \pi^0 \gamma$, fraction of events used for time dependent fit is larger thanks to easier vertex reconstruction with $\rho^0 \rightarrow \pi^+ \pi^-$
- The results are consistent with null asymmetry

$$S_{CP} = -0.83 \pm 0.65 \pm 0.18$$

$$A_{CP} = -0.44 \pm 0.49 \pm 0.14$$
Summary

• Many studies of $b \rightarrow s\gamma$ are performed in more than 20 years to search for new physics.
 – No hint of new physics yet.
• New window $b \rightarrow d\gamma$ was opened since 2006.
 – A hint in Isospin Asymmetry??
• Some analyses in $b \rightarrow s\gamma$ and all analyses in $b \rightarrow d\gamma$ are still statistical error dominant
 – Need higher luminosity experiments
 – \rightarrow Belle II and LHCb upgrade
• Some theoretical predictions are different btw groups.
 – Isospin violation
 – Time dependent CPV
 – Hope the predictions improved in coming several years.
backup
$C_{CP} = -A_{CP}$