Rare and forbidden decays at Belle

ICHEP 2012

Oksana Brovchenko for the Belle collaboration | 06.07.2012
Overview

Outline

- B^0 decays to invisible final states
- $B \rightarrow h^{(*)} \nu \bar{\nu}$
- Search for heavy neutral lepton
$B^0 \rightarrow \text{invisible}$

- $B^0 \rightarrow \nu\bar{\nu}$ highly helicity suppressed in the Standard Model ($\mathcal{B} \sim \mathcal{O}(10^{-20})$)

- Experimental signature: missing energy and momentum corresponding to the presence of a B^0 meson

Figure 1.1: Feynman diagrams for $B^0 \rightarrow \nu\bar{\nu}$ decay in the Standard Model.
$B^0 \to \text{invisible}$

- $B^0 \to \nu \bar{\nu}$ highly helicity suppressed in the SM ($\mathcal{B} \sim \mathcal{O}(10^{-20})$)

- Experimental signature: missing energy and momentum corresponding to the presence of a B^0 meson

- Same signature from new particles beyond the SM

- Example: $B^0 \to \bar{\nu} \chi_1^0$
 ($\mathcal{B} \sim \mathcal{O}(10^{-6} - 10^{-7})$)

Figure 1.2: Feynman diagrams for $B^0 \to \bar{\nu} \chi_1^0$ decay in the R-parity violation model.
$B^0 \rightarrow \text{invisible: reconstruction}$

- Data sample: 605fb^{-1} at the $\Upsilon(4S)$ resonance ($657 \times 10^6 B\bar{B}$ pairs)
- One B meson fully reconstructed in hadronic modes (B_{tag})
- 9.5×10^5 neutral B_{tag} candidates
- Candidate selection requirements: no additional charged tracks, π^0 or K_L^0 candidates left in the event
- Continuum background ($e^+ e^- \rightarrow q\bar{q}$) suppressed using cut on $\cos \theta_T$: angle between the B_{tag} thrust axis and the beam axis in the CM frame
- $\cos \theta_B$ to extract the signal yield: angle between the B_{tag} flight direction and the beam axis in the CM frame (cut away the region around ± 1 as differences between data and MC were observed in the sideband)

![Graphs showing signal and background distributions in $\cos \theta_B$ and $\cos \theta_T$](image)
$B^0 \rightarrow \text{invisible: reconstruction}$

- Most powerful variable: sum of the energies of ECL (electromagnetic calorimeter) clusters that are not associated with B_{tag} tracks or neutrals (E_{ECL})
- The signal yield is extracted from an extended unbinned maximum likelihood fit to E_{ECL} and $\cos \theta_B$
- Most of the background components models obtained from MC simulation (non-B background from off-resonance data)
- Validation of the E_{ECL} simulation using doubly tagged samples: hadronic $B_{tag} + B^0 \rightarrow D^{(\ast)}^- l^+ \nu$ ($l = e, \mu$)

![Comparison between data and MC for the control samples](attachment:image.png)
$B^0 \rightarrow \text{invisible}$: results (*Belle preliminary*)

- **Upper limit:** $\mathcal{B}(B \rightarrow \text{invisible}) < 1.3 \times 10^{-4}$
 (limit estimation performed using the fit likelihood as a function of the branching fraction)

- **Signal yield:** $N_{\text{sig}} = 8.9^{+6.3}_{-5.5}$
\[B \rightarrow h(\ast)\nu\bar{\nu} \]

Motivation

- Flavor changing neutral currents forbidden at tree level
- \(b \rightarrow s\nu\bar{\nu} \) and \(b \rightarrow d\nu\bar{\nu} \) highly suppressed
- Very precise theoretical predictions (only one hadron in the final state, no charged leptons)
- Models beyond SM (SUSY, non-standard Z coupling, fourth generation) could enhance these decays
$B \rightarrow h^{(*)} \bar{\nu} \nu$: reconstruction

- Larger data sample and improved reconstruction compared to the previous Belle analysis
- Data sample: 711fb^{-1} at the $\Upsilon(4S)$ resonance ($771 \times 10^6 B \bar{B}$ pairs)
- Data reprocessed with new improved tracking
- One B meson fully reconstructed in hadronic modes (B_{tag}) using new full reconstruction [NIM A 654, 432-440 (2011)]
 - 1104 decay channels exclusively reconstructed
 - Hierarchical reconstruction procedure
 - Multivariate approach (neural net package NeuroBayes) instead of cuts
 - Efficiency improvement of factor ~ 2 for the same purity
$B \rightarrow h^{(*)} \nu \bar{\nu}$: reconstruction

- Larger data sample and improved reconstruction compared to the previous Belle analysis
- Find one light meson ($K^+, K^*, K^0_s, K^{*0}, \pi^+, \pi^0, \rho^+, \rho^0, \phi$)
- No additional charged tracks or π^0 candidates left in the event
- Continuum background ($e^+ e^- \rightarrow q\bar{q}$) suppressed using $\cos \theta_T$: angle between the B_{tag} thrust axis and the beam axis in the CM frame
- Most powerful variable: sum of the energies of ECL (electromagnetic calorimeter) clusters that are not associated with B_{tag} tracks or neutrals (E_{ECL})
- The signal yield is extracted from an extended binned maximum likelihood fit to E_{ECL}

Example: $B^0 \rightarrow K^{*0} \nu \bar{\nu}$
\(B \rightarrow h^{(*)}\nu\bar{\nu} : \text{expected limits} \)

- Comparison of sensitivity of the new analysis to the previous one

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected branching ratio limit at 90% CL (711fb(^{-1}))</th>
<th>Expected branching ratio limit at 90% CL, previous Belle analysis (492fb(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \rightarrow K^+\nu\bar{\nu})</td>
<td>(2.2 \times 10^{-5})</td>
<td>(10 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^+ \rightarrow K^{*+}\nu\bar{\nu})</td>
<td>(4.2 \times 10^{-5})</td>
<td>(22 \times 10^{-5})</td>
</tr>
<tr>
<td>(K^{*+} \rightarrow K^+\pi^0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B^+ \rightarrow K^{*+}\nu\bar{\nu})</td>
<td>(4.4 \times 10^{-5})</td>
<td>(22 \times 10^{-5})</td>
</tr>
<tr>
<td>(K^{*+} \rightarrow K^0\pi^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B^+ \rightarrow \pi^+\nu\bar{\nu})</td>
<td>(3.9 \times 10^{-5})</td>
<td>(10 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^+ \rightarrow \rho^+\nu\bar{\nu})</td>
<td>(9.8 \times 10^{-5})</td>
<td>(19 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^0 \rightarrow K^0_{s}\nu\bar{\nu})</td>
<td>(7.3 \times 10^{-5})</td>
<td>(16 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^0 \rightarrow K^{*0}\nu\bar{\nu})</td>
<td>(5.0 \times 10^{-5})</td>
<td>(20 \times 10^{-5})</td>
</tr>
<tr>
<td>(K^{*0} \rightarrow K^+\pi^-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B^0 \rightarrow \pi^0\nu\bar{\nu})</td>
<td>(3.6 \times 10^{-5})</td>
<td>(10 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^0 \rightarrow \rho^0\nu\bar{\nu})</td>
<td>(16.5 \times 10^{-5})</td>
<td>(16 \times 10^{-5})</td>
</tr>
<tr>
<td>(B^0 \rightarrow \phi\nu\bar{\nu})</td>
<td>(9.1 \times 10^{-5})</td>
<td>(13 \times 10^{-5})</td>
</tr>
</tbody>
</table>
$B \rightarrow h^{(*)}\nu\bar{\nu}$: results (Belle preliminary)

$B^+ \rightarrow K^+\nu\bar{\nu}$

K^+

$B^0 \rightarrow K^0_s\nu\bar{\nu}$

K^0_s

$$N_{\text{Sig}} = 13.3^{+7.4}_{-6.6}$$

$$S_{\text{stat}} = 2.1\sigma$$

$$S_{\text{stat+syst}} = 2.0\sigma$$

$$N_{\text{Sig}} = 1.8^{+3.3}_{-2.4}$$

$$S_{\text{stat}} = 0.6\sigma$$

$$S_{\text{stat+syst}} = 0.6\sigma$$
$B \rightarrow h^{(*)} \nu \bar{\nu}$: results (*Belle preliminary*)

$B^+ \rightarrow K^{*+}(K^{+}\pi^0)\nu \bar{\nu}$

$B^+ \rightarrow K^{*+}(K^0_\pi)\nu \bar{\nu}$

$B^0 \rightarrow K^0\nu \bar{\nu}$

$N_{Sig} = -1.9^{+1.7}_{-1.1}$

$N_{Sig} = 0.0$

$N_{Sig} = -2.3^{+10.1}_{-3.5}$
$B \rightarrow h^{(*)} \nu \bar{\nu}$: results (*Belle preliminary*)

$B^+ \rightarrow \pi^+ \nu \bar{\nu}$

$N_{\text{Sig}} = 15.2^{+7.1}_{-6.2}$

$S_{\text{stat}} = 2.8\sigma$

$S_{\text{stat+syst}} = 2.6\sigma$

$B^0 \rightarrow \pi^0 \nu \bar{\nu}$

$N_{\text{Sig}} = 3.5^{+2.6}_{-1.9}$

$S_{\text{stat}} = 2.2\sigma$

$S_{\text{stat+syst}} = 2.0\sigma$
$B \rightarrow h(\ast)\nu\bar{\nu}$: results (Belle preliminary)

$B^+ \rightarrow \rho^+\nu\bar{\nu}$

$N_{Sig} = 11.3^{+6.3}_{-5.4}$
$S_{stat} = 2.3\sigma$
$S_{stat+syst} = 1.7\sigma$

$B^0 \rightarrow \rho^0\nu\bar{\nu}$

$N_{Sig} = 1.6^{+5.0}_{-4.1}$
$S_{stat} = 0.4\sigma$
$S_{stat+syst} = 0.4\sigma$

$B^0 \rightarrow \phi\nu\bar{\nu}$

$N_{Sig} = 1.5^{+2.85}_{-0.9}$
$S_{stat} = 0.6\sigma$
$S_{stat+syst} = 0.5\sigma$
$B \rightarrow h^{(*)} \nu \bar{\nu}$: results (Belle preliminary)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Branching ratio limit at 90% CL</th>
<th>Branching ratio limit at 90% CL previous Belle analysis</th>
<th>PDG limit at 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow K^+ \nu \bar{\nu}$</td>
<td>5.5×10^{-5}</td>
<td>1.4×10^{-5}</td>
<td>1.3×10^{-5}</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*+} \nu \bar{\nu}$</td>
<td>3.3×10^{-5}</td>
<td>14×10^{-5}</td>
<td>8×10^{-5}</td>
</tr>
<tr>
<td>$K^{*+} \rightarrow K^+ \pi^0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*0} \nu \bar{\nu}$</td>
<td>2.9×10^{-5}</td>
<td>14×10^{-5}</td>
<td>8×10^{-5}</td>
</tr>
<tr>
<td>$K^{*+} \rightarrow K^0 \pi^+ $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \nu \bar{\nu}$</td>
<td>9.8×10^{-5}</td>
<td>17×10^{-5}</td>
<td>10×10^{-5}</td>
</tr>
<tr>
<td>$B^+ \rightarrow \rho^+ \nu \bar{\nu}$</td>
<td>21.4×10^{-5}</td>
<td>44×10^{-5}</td>
<td>15×10^{-5}</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^0_s \nu \bar{\nu}$</td>
<td>9.4×10^{-5}</td>
<td>16×10^{-5}</td>
<td>5.6×10^{-5}</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^{*0} \nu \bar{\nu}$</td>
<td>5.4×10^{-5}</td>
<td>34×10^{-5}</td>
<td>1.2×10^{-5}</td>
</tr>
<tr>
<td>$K^{*0} \rightarrow K^+ \pi^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow \pi^0 \nu \bar{\nu}$</td>
<td>6.9×10^{-5}</td>
<td>22×22^{-5}</td>
<td>22×10^{-5}</td>
</tr>
<tr>
<td>$B^0 \rightarrow \rho^0 \nu \bar{\nu}$</td>
<td>20.8×10^{-5}</td>
<td>44×10^{-5}</td>
<td>44×10^{-5}</td>
</tr>
<tr>
<td>$B^0 \rightarrow \phi \nu \bar{\nu}$</td>
<td>12.5×10^{-5}</td>
<td>5.8×10^{-5}</td>
<td>5.8×10^{-5}</td>
</tr>
</tbody>
</table>
$B \rightarrow \text{heavy neutral lepton}$

- Mass generation in SM: coupling of the Higgs boson to left and right components of the particle
- No right-handed neutrino in SM \rightarrow neutrinos should be massless
- Neutrino oscillation show that neutrinos do have a mass
- \Rightarrow sterile right-handed neutrinos?
- Heavy neutral leptons appear in many models beyond SM(SUSY, νMSM, GUT)

![Diagrams](image)

FIG. 1. Heavy neutrino production (a) and decay (b) diagrams.

- No strong interaction (lepton)
- No weak interaction (right handed)
- No electromagnetic interaction (neutral)
- Only way to interact: mixing with left-handed neutrinos
$B \rightarrow \nu_h$: reconstruction

- Search for $B \rightarrow l\nu_h(X), \nu_h \rightarrow l\pi$ decays ($l = e, \mu$)
- $M(\nu_h) = M(l_1\pi)$
- 'small' masses ($< 2\text{GeV}$): pick out $B \rightarrow D^{(*)}l\nu_h$,
 'large' masses ($> 2\text{GeV}$): inclusive reconstruction
- Distinctive feature of ν_h: large flight length ($cT \sim 20\text{m}$)
- Selection to strongly suppress the background:
 - Strict lepton identification requirements to suppress physical
 background from decay with similar topology
 - ν_h vertex quality requirements to suppress combinatorial background
- Background reduced by a factor $\sim 10^6$
- Efficiency depends on B meson decay mode and ν_h mass ($\sim 3.3\% - 17\%$)
$B \rightarrow \nu_h$: results (Belle preliminary)

Expectations from MC
(obtained from 3 streams)

- $ee\pi$: 2.3 ± 1.0
- $\mu\mu\pi$: 2.3 ± 0.9
- $e\mu\pi + \mu e\pi$: 4.0 ± 1.2

Results on data

- $ee\pi$: 6 ± 2.5
- $\mu\mu\pi$: 2 ± 1.4
- $e\mu\pi + \mu e\pi$: 3 ± 1.7
$B \rightarrow \nu_h$: results (Belle preliminary)

- Upper limit on mixing in the mass range 0.5 – 5 GeV/c2 was set
- Maximum sensitivity is reached around 2 GeV/c2
- Upper limit for product branching fraction was set:
 \[\mathcal{B}(B \rightarrow l\nu_h(X)) \times \mathcal{B}(\nu_h \rightarrow l\pi) < 6.6 \times 10^{-7} \text{ for } l = e, \mu \]
Summary

- Search for rare decays offers an opportunity to search for New Physics beyond the Standard Model
- In the clean environment of Belle a study of decays with neutrinos in the final state is possible using the full reconstruction
- No significant signal observed in $B^0 \rightarrow \nu \bar{\nu}$ and $B^0 \rightarrow h^{(*)} \nu \bar{\nu}$: upper limits were evaluated
- Search for heavy neutrinos was performed and limit on the mixing was set
Figure 1: Exemplary fully reconstructed event. The B_{sig} (signal side) is the decay of physics interest, while the B_{tag} (tag side) is the other B meson, reconstructed by the full reconstruction method.
Full reconstruction

Figure 3: The 4 stages of the full reconstruction
Full reconstruction

(a) B^+ selection with roughly equal purity

(b) B^+ selection with roughly equal background level

(c) B^+ selection with roughly equal efficiency

(d) B^0 selection with roughly equal efficiency

Figure 2: M_{bc} plots for different selections. The dashed red line is the 3-σ limit.
\[B \rightarrow h^{(*)}\nu\bar{\nu} : \text{signal side selection} \]

- **\(B_{\text{tag}} \):**
 - Correct charge combination with the signal-side candidate
 - \(M_{bc} > 5.27 \text{ GeV} \)
 - \(-0.08 \text{ GeV} < \Delta E < 0.06 \text{ GeV} \)
 - \(B_{\text{TagNBout}} > 0.02 \)

- No remaining \(\pi^0 \) candidates or charged tracks

- Missing momentum: \(-0.86 < \cos \theta_{\text{miss}} < 0.95 \) (to avoid events with particles escaping through the beam pipe)

- Continuum supression: \(-0.8 < \cos TOB < 0.7 \) (angle between the thrust axis of the \(B_{\text{sig}} \) and the rest of the charged tracks)

- Momentum of the light meson: \(1.6 \text{ GeV} < p < 2.5 \text{ GeV} \)
$B \rightarrow h(\ast)\nu\bar{\nu}$: number of events

<table>
<thead>
<tr>
<th>Channel</th>
<th>Expected total number of background events (Monte Carlo)</th>
<th>Observed number of events in data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow K^+\nu\bar{\nu}$</td>
<td>33.6 ± 2.7</td>
<td>43</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*+}\nu\bar{\nu}$</td>
<td>17.2 ± 1.9</td>
<td>21</td>
</tr>
<tr>
<td>$K^{*+} \rightarrow K^+\pi^0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*+}\nu\bar{\nu}$</td>
<td>2.4 ± 0.7</td>
<td>0</td>
</tr>
<tr>
<td>$K^{*+} \rightarrow K^0\pi^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+\nu\bar{\nu}$</td>
<td>101, 4 ± 4.7</td>
<td>107</td>
</tr>
<tr>
<td>$B^+ \rightarrow \rho^+\nu\bar{\nu}$</td>
<td>117.0 ± 5.1</td>
<td>90</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^0_s\nu\bar{\nu}$</td>
<td>3.4 ± 0.9</td>
<td>4</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^{*0}\nu\bar{\nu}$</td>
<td>13.8 ± 1.7</td>
<td>10</td>
</tr>
<tr>
<td>$K^{*0} \rightarrow K^+\pi^-$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow \pi^0\nu\bar{\nu}$</td>
<td>7.3 ± 1.3</td>
<td>6</td>
</tr>
<tr>
<td>$B^0 \rightarrow \rho^0\nu\bar{\nu}$</td>
<td>33, 7 ± 2.7</td>
<td>31</td>
</tr>
<tr>
<td>$B^0 \rightarrow \phi\nu\bar{\nu}$</td>
<td>2.1 ± 0.6</td>
<td>3</td>
</tr>
</tbody>
</table>
$B \rightarrow h^{(*)} \nu \bar{\nu}$ signal efficiency

<table>
<thead>
<tr>
<th>Channel</th>
<th>branching fraction factor</th>
<th>$\epsilon_{sig}[10^{-5}]$ raw</th>
<th>averaged B_{tag} correction</th>
<th>$\epsilon_{sig}[10^{-5}]$ final</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow K^+ \nu \bar{\nu}$</td>
<td>-</td>
<td>71.6</td>
<td>0.79</td>
<td>56.76 ± 0.67</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*+} \nu \bar{\nu}$</td>
<td>0.33</td>
<td>22.5</td>
<td>0.8</td>
<td>17.89 ± 0.66</td>
</tr>
<tr>
<td>$K^+ \pi^0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow K^{*+} \nu \bar{\nu}$</td>
<td>$0.692 \times 0.666 \times$</td>
<td>12.9</td>
<td>0.79</td>
<td>10.20 ± 0.60</td>
</tr>
<tr>
<td>$K_{s0} \pi^+$</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^+ \rightarrow \pi^+ \nu \bar{\nu}$</td>
<td>-</td>
<td>42.3</td>
<td>0.8</td>
<td>33.8 ± 0.52</td>
</tr>
<tr>
<td>$B^+ \rightarrow \rho^+ \nu \bar{\nu}$</td>
<td>-</td>
<td>17.1</td>
<td>0.78</td>
<td>13.47 ± 0.32</td>
</tr>
<tr>
<td>$B^0 \rightarrow K_{s0} \nu \bar{\nu}$</td>
<td>0.692</td>
<td>11.93</td>
<td>0.70</td>
<td>8.36 ± 0.29</td>
</tr>
<tr>
<td>$B^0 \rightarrow K^{*0} \nu \bar{\nu}$</td>
<td>0.66</td>
<td>18.5</td>
<td>0.74</td>
<td>14.4 ± 0.40</td>
</tr>
<tr>
<td>$K^+ \pi^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B^0 \rightarrow \pi^0 \nu \bar{\nu}$</td>
<td>-</td>
<td>23.4</td>
<td>0.71</td>
<td>16.6 ± 0.34</td>
</tr>
<tr>
<td>$B^0 \rightarrow \rho^0 \nu \bar{\nu}$</td>
<td>-</td>
<td>8.8</td>
<td>0.72</td>
<td>6.34 ± 0.21</td>
</tr>
<tr>
<td>$B^0 \rightarrow \phi \nu \bar{\nu}$</td>
<td>0.492</td>
<td>7.9</td>
<td>0.73</td>
<td>5.77 ± 0.15</td>
</tr>
</tbody>
</table>