Physics Prospects of Super KEKB and Belle II

Kurtis Nishimura
University of Hawaii
(on behalf of the Belle II Collaboration)

Lake Louise Winter Institute, 2011
February 24, 2011
History of Successes from B Factories

• Belle and BaBar have made a wide variety of achievements over ~10 year running period:
 – CKM measurements of:
 • Matrix elements
 • Unitary triangle angles
 - CKM is correct to ~first order
 – Direct CP violation:
 • B → K π
 – New hadronic states:
 • X,Y,Z mesons
 – Rare probes of new physics:
 • b → s γ
 • b → s ℓ⁺ ℓ⁻

• Belle II at SuperKEKB provides a unique opportunity to constrain and search for new physics at the intensity frontier, in a complimentary way to LHC.
Belle II @ SuperKEKB: Toward 50 ab$^{-1}$

- **Belle II / Super KEKB** timeline:
 - Expect to begin operation in 2014.
 - Collect ~50 ab$^{-1}$ by 2020-2021.

- **Physics Prospects**:
 - What can we do with 50 ab$^{-1}$ of data? (...and what can we do along the way?)
 - How are super B factory measurements complementary to those at LHC?

- **Selected physics topics, examples of**:
 - Modes with missing energy: $B \rightarrow \tau \nu$
 - Direct CP violation: $B \rightarrow K \pi$
 - Mixing-induced CP violation: $b \rightarrow s \gamma$

*Details of SuperKEKB / Belle II detector covered in previous talk (H. Nakayama)
• At Belle II, B’s are produced by:
 \[e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B} \]
 – One B meson (“tag” B) can be reconstructed in a common decay.
 • Fully reconstructed: e.g., \(B \rightarrow D^{(*)}\pi \), \(B \rightarrow D^{(*)}\rho \), ...
 • Partially reconstructed: e.g., semileptonically
 – Allows determination of “signal” B flavor, charge, momentum.
 • Particles associated with “tag” B can be removed from event.
 \(\Rightarrow \) Allows searches for modes with missing energy.
Missing Energy Modes: $B^{-} \rightarrow \tau^{-} \nu$

- Tension between the global CKM fit and $B(B \rightarrow \tau \nu)$:

![Graph showing tension between the global CKM fit and $B(B \rightarrow \tau \nu)$]

- Better measurement of $B \rightarrow \tau \nu$ may reveal source of the tension.

 - Tag-side information vital when $\geq 2 \nu'$s in final state! Signal is seen as zero excess E_{ECL}.

Example w/ semileptonic tag, 657M BB

$B(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}) = (1.54^{+0.38}_{-0.37}(stat)^{+0.29}_{-0.31}(syst)) \times 10^{-4}$

LLWI - Feb. 24, 2011

Nishimura - Physics Prospects of Super KEKB / Belle II
B → τν at Belle II

• Also sensitive to new physics:
 • In type-II Two-Higgs Doublet Model (THDM), the SM branching fraction of $B^{-} \rightarrow \tau^{-} \nu$ is modified:

 $$\mathcal{B}(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}) = \mathcal{B}_{SM}(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}) \left[1 - \frac{m_B^2}{m_H^2} \tan^2 \beta \right]$$

Belle II discovery region with 5 ab$^{-1}$
 • Assumes improvements in theory values:
 • 5% $|V_{ub}|$ error
 • 5% f_B error

5 σ discovery region

current 95% exclusion
B → τ ν at Belle II

- Also sensitive to new physics:
 - In type-II Two-Higgs Doublet Model (THDM), the SM branching fraction of $B^- \rightarrow \tau^- \nu$ is modified:

 $$\mathcal{B}(B^- \rightarrow \tau^- \bar{\nu}_\tau) = \mathcal{B}_{\text{SM}}(B^- \rightarrow \tau^- \bar{\nu}_\tau) \left[1 - \frac{m_B^2}{m_H^2} \tan^2 \beta \right]$$

 Belle II discovery region with 50 ab$^{-1}$

- Assumes improvements in theory values:
 - 2.5% $|V_{ub}|$ error
 - 2.5% f_B error

*Does not yet account for improvements in full-recon efficiency. Recently work suggests $\mathcal{O}(2x)$ improvements.
Direct CP Violation: $B \rightarrow K \pi$

- Puzzle of direct CP violation in $K \pi$:
 - Difference in DCPV in charged/neutral B decays:
 \[\Delta A \equiv A_{K^\pm \pi^0} - A_{K^\pm \pi^\mp} = +0.164 \pm 0.037 \]

- If the only diagrams are:
 then we expect $\Delta A = 0$
 - Missing diagrams?
 - Hadronic interactions?
 \[\Rightarrow \] These result in large theoretical uncertainty...

B $\rightarrow K \pi$ w/ 535M BB
CPV in $B \rightarrow K \pi$ at Belle II

- However, we can compare to a **model independent** sum rule:

$$A_{\text{CP}}(K^+\pi^-) + A_{\text{CP}}(K^0\pi^+) \frac{B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+}$$

$$= A_{\text{CP}}(K^+\pi^0) \frac{2B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{\text{CP}}(K^0\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)}$$

- This rule is free of the previous theoretical complications.
- Can be represented as a diagonal band:

- **Current situation:**

Slope determined by branching fractions & lifetimes, fairly precisely known.
CPV in $B \rightarrow K \pi$ at Belle II

• However, we can compare to a **model independent** sum rule:

$$A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{B(K^0\pi^+)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} = A_{CP}(K^+\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)}$$

 -- This rule is free of the previous theoretical complications.
 -- Can be represented as a diagonal band:

• Current situation:

Shaded region is overlap of $A(K^0\pi^0)$ and $A(K^0\pi^+)$.

Benefits from:
✓ Charged K/π ID (TOP counter)
✓ $\pi^0 \rightarrow \gamma \gamma$ efficiency (ECL)
✓ K_S vertexing eff. (increased SVD radius)
✓ ...and of course, statistics

⇒ Belle II is especially well suited to measure the all neutral final state: $K^0\pi^0$
CPV in $B \rightarrow K \pi$ at Belle II

• However, we can compare to a **model independent sum rule**:

\[
A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{B(K^0\pi^+)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} = A_{CP}(K^+\pi^0) \frac{2B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)}
\]

– This rule is free of the previous theoretical complications.
– Can be represented as a diagonal band:

• Current situation:

Shaded region is overlap of $A(K^0\pi^0)$ and $A(K^0\pi^+)$.

Benefits from:

- Charged K/π ID (TOP counter)
- $\pi^0 \rightarrow \gamma\gamma$ efficiency (ECL)
- K_S vertexing eff. (increased SVD radius)
- ...and of course, statistics

⇒ **Belle II is especially well suited to measure the all neutral final state: $K^0\pi^0$**

Gronau, PLB627, 82 (2005)
Mixing Induced CP Violation in $b \rightarrow s \gamma$

- In SM, photon polarizations in $b \rightarrow s \gamma$ depend on b flavor:

 $b \rightarrow s \gamma_L$
 $\bar{b} \rightarrow s \gamma_R$

- Presence of mixing-induced CP violation would indicate the presence of right handed currents and clear hints of new physics.
 - This type of new physics does not require a new phase.
Time Dependent CPV in $b \rightarrow s \gamma$

• A recent example:
 – Search for TCPV in $B \rightarrow \phi K \gamma$

Belle preliminary, arXiv: 1012.0481
$B \rightarrow \phi K \gamma$ with 772M BB

\[S(B \rightarrow \phi K \gamma) = +0.74^{+0.72}_{-1.05}(\text{stat})^{+0.10}_{-0.24}(\text{syst}) \]
\[A(B \rightarrow \phi K \gamma) = +0.35 \pm 0.58(\text{stat})^{+0.23}_{-0.10}(\text{syst}) \]

– Measurements are statistics limited...
 • Also the case for similar modes: $B \rightarrow K_S \pi^0 \gamma$, $B \rightarrow K^* \gamma$
Time Dependent CPV in $b \rightarrow s \gamma$

- Statistics limited for $S(b \rightarrow s \gamma)$ in other modes
Time Dependent CPV in $b \rightarrow s \gamma$

- Example improvements in the error of S as a function of integrated luminosity for:
 - Nonresonant $K_S \pi^0 \gamma$
 - Resonant $K^*0 \gamma$
 - All $K_S \pi^0 \gamma$

- This sensitivity can help distinguish between models...

Belle II projected

✓ Efficiency for $K_S \rightarrow \pi^+ \pi^-$ improves with SVD radius.
Identifying NP at Belle II

Projected with 5 ab$^{-1}$

- Randomly chosen parameter point

--- Current 99% CL on $S(B \to \phi K_S)$

Belle II can identify the nature of NP, in some cases indistinguishable at LHC.
Summary

• Belle II at SuperKEKB will enable a new generation of precision studies in flavor physics.
 – A number of unique opportunities to further constrain SM and search for new physics.

• Significant opportunities both during data collection and with final dataset (50+ ab$^{-1}$).
 – Only a short sampling of modes given here... for more information, see:

Belle II and LHC experiments will be nicely complimentary.
Missing Energy Modes: $B \to K \nu \nu$

- FCNC process:
 - Loops in penguin / box diagrams make $B \to K \nu \nu$ sensitive to new physics.
 - SM prediction [Buchalla, PRD 63, 014015 (2001)]:
 \[\mathcal{B}(B \to K \nu \nu) = (3.8^{+1.2}_{-0.6}) \times 10^{-6} \]

Current best upper limits by BaBar:

- BaBar analysis w/ 657M BB
 - $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) < 1.3 \times 10^{-5}$
 - $\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) < 5.6 \times 10^{-5}$

\Rightarrow Another mode with two neutrinos: well-suited for B-factory environment.
B \rightarrow K\(^{(\ast)}\) $\nu \nu$ at Belle

\[\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})_{SM}|} \]
\[\eta = \frac{-\Re(C_L^{\nu}C_R^{\nu\ast})}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2} . \]
Figure 5.3: Expected total errors on ΔS as a function of integrated luminosity.
$B \rightarrow D^* \tau \nu$