Quarkonia, Resonances and Spectroscopy

Gagan Mohanty

Mumbai

20th Particles & Nuclei International Conference

25-29 August 2014
Hamburg, Germany
Enter the quark model

Examples...

Meson

Baryon
Basics of the quarkonia

- Usually refer to charmonium \((c \bar{c})\) and bottomonium \((b \bar{b})\) states

charm and bottom quarks are heavy: \(m_c \sim 1.5 \text{ GeV} \sim 1.6 m_p\)
\(m_b \sim 4.5 \text{ GeV} \sim 4.8 m_p\)

velocities are small: \(v/c \sim 0.25\) for \(c \bar{c}\) \((\sim 0.1\) for \(b \bar{b}\))
Nonrelativistic Quantum Mechanics is valid

\[
- \frac{\hbar^2}{2m_r} \nabla^2 \Psi + V(r)\Psi = E\Psi
\]

What about \(V(r)\)?
Cornell potential

Two parameters: slope and intercept

Same $V(r)$ works both for charmonium ($c\bar{c}$) and bottomonium ($b\bar{b}$)
Side-by-side comparison

Charmonium \((c\bar{c})\)
Positronium \((e^+ e^-)\)

\[\begin{align*}
\psi' \quad & \quad 2^1S_0 (\eta_c) \quad \quad 2^3S_1 (\psi') \\
& \quad 2^1P_1 \quad 2^3P_0 (x_0) \\
J/\psi \quad & \quad 1^3S_1 (\psi) \\
& \quad 1^1S_0 (\eta_c)
\end{align*} \]

\[\begin{align*}
\text{Dissociation energy} \\
& \quad 2^3S_1 \\
& \quad 2^3P_2 (x_2) \\
& \quad 2^3P_1 (x_1) \\
& \quad 2^1P_1 \\
& \quad 2^3P_0 (x_0)
\end{align*} \]

\[\begin{align*}
\text{Relative energy (MeV)} \\
\text{Relative energy (eV)}
\end{align*} \]
All states below the “open charm” threshold are identified.

$2M_D = 3.73 \text{ GeV}$
Bottomonium spectra circa 2014

\[2M_B = 10.56 \text{ GeV} \]

Most of the states below “open bottom” threshold have been identified.
What about other varieties?

No *a priori* reason for mesons to exist only in $q\bar{q}$ configurations, or baryons to occur with only qqq structures.

Pentaquark:
- e.g. an $S=+1$ baryon

Glueball:
- bundling gluons into a color singlet state

Tetraquark state:
- $q\bar{q}$-gluon hybrid meson:

"u" "c" "d" "g" "s"
Production of $\psi(2S) \rightarrow J/\psi\pi^+\pi^-$ in pp collisions

For the prompt $\psi(2S)$ production, NLO NRQCD predictions describe the data satisfactorily while the colour evaporation model is not that good at highest p_T regions and NNLO* colour-singlet fails throughout fine-tuning required.

In the non-prompt case, NLO GM-VFNS and FONLL calculations do pretty good job although a peculiar tendency is observed for the theory to predict a slightly harder p_T spectrum than that in data.

arXiv:1407.5532
Productions of χ_{c1} and χ_{c2} in pp collisions

NRQCD describes prompt χ_{c1} data rather well and the k_T factorisation (CSM) significantly overestimates (underestimates) the data.

Non-prompt χ_c productions generally agree with predictions based upon the FONLL approach.
Double-differential cross sections of prompt J/ψ and $\psi(2S)$

- Constitute a significant improvement over the previous results both in terms of accuracy and p_T reach (≥ 100 GeV)
- Will contribute towards an improved understanding of quarkonium production in the scope of NRQCD or other theoretical approaches
Prompt J/ψ pair production in pp collisions

The cross section of prompt J/ψ pair production is measured to be $[1.49 \pm 0.07\text{(stat.)} \pm 0.13\text{(syst.)}]$ nb.

Probes J/ψ pair production at higher J/ψ p_T and more central rapidity than the LHCb measurement.

No evidence for the η_b state in the J/ψ pair invariant-mass distribution.

$N_{\text{sig}} = 446 \pm 23$

arXiv:1406.0484

PLB 707 (2012) 52
Observation of exclusive charmonium pairs

- First observation of the central exclusive production of pairs of charmonia
- Measurements of individual cross section of $J/\psi J/\psi$ and $J/\psi\psi(2S)$ and their ratio are in agreement with preliminary theory predictions
- No signal for the production of pairs of P-wave charmonia

$\sigma^{J/\psi J/\psi} = 58 \pm 10{\text{(stat)}} \pm 6{\text{(syst)}} \text{ pb}$,
$\sigma^{J/\psi J/\psi(2S)} = 63^{+27}_{-18}{\text{(stat)}} \pm 10{\text{(syst)}} \text{ pb}$,
$\sigma^{\psi(2S)\psi(2S)} < 237 \text{ pb}$,
$\sigma^{\chi_{c0}\chi_{c0}} < 69 \text{ nb}$,
$\sigma^{\chi_{c1}\chi_{c1}} < 45 \text{ pb}$,
$\sigma^{\chi_{c2}\chi_{c2}} < 141 \text{ pb}$,
Resonant substructures in $B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$

- Precise measurement of $D_{s2}^*(2573)^-$ mass and width
- An excess of events near 2.86 GeV is found in $m(\bar{D}^0K^-)$ spectrum
- To describe the data well, we need an admixture of spin-1 and spin-3 states
- The previously seen $D_{sj}^*(2860)^-$ state is composed of at least two particles

[Graphs and data plots demonstrating the measurements and distributions]
X(3872): Belle observed in $B \to (J/\psi \pi^+ \pi^-)K$

Confirmed by many other experiments:
- in exclusive B decays by BABAR and LHCb
- in high-energy $p\bar{p}$ (CDF and D0) and pp collisions (CMS, LHCb)

Steve with a big fish!

\(M = 3872 \pm 1 \text{ MeV}\)
\(\Gamma < 2.3 \text{ MeV}\)

PRL 91 (2003) 262001
Is it the conventional ψ_{c2}?

Charmonium model prediction:

$$\frac{BF(\frac{c_2 \rightarrow c_1}{\rho})}{BF(\frac{c_2 \rightarrow J/\psi}{+ J/\psi})} > 5$$
Does the $X(3872)$ decay to $\gamma \chi_{c1}$?

B → Kχ_{c1}?

(The peak near 3823 MeV/c2 is the conventional triplet D-wave charmonium state, ψ_2)

No $X(3872)$ signal

\[
\frac{BF(c_2 \rightarrow c_1)}{BF(c_2 \rightarrow ^+ J/\psi)} < 0.25
\]

PRL 111 (2013) 032001
Data favour the 1^{++} over the 2^{-+} hypothesis for the $X(3872)$ at $>8\sigma$ significance.

- Multidimensional angular analysis involving $\cos \theta_X$, $\cos \theta_{\pi\pi}$, $\Delta \phi_{X,\pi\pi}$, $\cos \theta_{J/\psi}$ and $\Delta \phi_{X,J/\psi}$

- Closes the door for conventional $c\bar{c}$ meson assignment
X(3872) looks like a $D^*0\overline{D}^0$ molecule

Caveat: It is still possible that “either/or” is not the correct hypothesis. The X(3872) could be a linear combination of a molecule and a charmonium state, in which the molecular component is dominant.

Predicted by N.A. Törnqvist: Z Phys C 61, 525 (1994)
Observation of $Z^+(4430)$ in $B \to K\psi'\pi$ decays

$M = 4433 \pm 4{\text{(stat)}} \pm 2{\text{(syst)}}$ MeV

$\Gamma = 45 \ ^{+18}_{-13}{\text{(stat)}} ^{+30}_{-13}{\text{(syst)}}$ MeV

with a product branching fraction

$[4.1 \pm 1.0{\text{(stat)}} \pm 1.4{\text{(syst)}}] \times 10^{-5}$

➢ The first candidate for an exotic, charged charmonium-like state

Veto K^* and K^{**} resonances in the study

➢ Important technical objection: Could higher K^{**} resonances & interference effects produce such structure?

BABAR was able to describe the structure purely in terms of reflections of higher K^* states although did not contradict the above observation
DP analysis with interference and K^* resonances

- Recent Dalitz plot analysis from Belle still finds a signal of 5σ significance
- A spin parity assignment of 1^+ is found to be preferred over 0^- at 2.9σ level while all other are ruled out with greater than 4.3σ significance

Any news from LHCb or other?
Observation of the resonant nature of $Z(4430)$

4D fit to the decay amplitude reveals that the data cannot be described with the $(K\pi)$ resonances alone.

The same is corroborated by a model-independent approach.

A highly significant signal for the $Z^+(4430)$ resonance is obtained with an unambiguous determination J^P as 1^+.

PRL 112 (2014) 222002
Amplitude analysis of $B \rightarrow J/\psi K\pi$

- Look for possible exotic, charmonium-like resonances in the $J/\psi\pi$ system
- 4D amplitude analysis comprising $(M_{K\pi}^2, M_{J/\psi\pi}^2, \cos \theta, \phi)$, where θ is the J/ψ helicity angle and ϕ is the angle between the two planes containing $J/\psi(\ell^+\ell^-)$ and $K\pi$ systems in the B rest frame
- Resonances: 10 K^* resonances and the $Z_c(4430)^+$ state for the $J/\psi\pi$ system; additional Z_c^+ states are used for a cross-check
- Tried out five spin-parity hypotheses: $0^-, 1^+, 1^-, 2^+, 2^-$ for the Z_c^+ ($J^P = 0^+$ is forbidden due to parity conservation)

![Graphs showing resonance analysis](image)

- Blue solid lines are projections of the $J/\psi\pi$ invariant mass including a new Z_c^+ state along with the $Z_c(4430)$
- Red dashed lines with the $Z_c(4430)$ only

711 fb$^{-1}$
Observation of a new state in $B \rightarrow J/\psi K\pi$

<table>
<thead>
<tr>
<th>J^P</th>
<th>0^-</th>
<th>1^-</th>
<th>1^+</th>
<th>2^-</th>
<th>2^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass, MeV/c^2</td>
<td>4220 ± 14</td>
<td>4315 ± 40</td>
<td>4196 ± 27</td>
<td>4209 ± 14</td>
<td>4203 ± 24</td>
</tr>
<tr>
<td>Width, MeV</td>
<td>71 ± 20</td>
<td>220 ± 80</td>
<td>370 ± 61</td>
<td>64 ± 18</td>
<td>121 ± 53</td>
</tr>
<tr>
<td>Significance</td>
<td>3.3σ</td>
<td>2.3σ</td>
<td>8.2σ</td>
<td>3.9σ</td>
<td>1.9σ</td>
</tr>
</tbody>
</table>

- A new Z_c^+ state [$Z_c(4200)^+$] with $J^P = 1^+$ is found with 7.2σ significance
 \[
 M = 4196^{+31+17}_{-29-6} \text{ MeV}/c^2, \quad \Gamma = 370^{+70+70}_{-70-85} \text{ MeV}
 \]
- Other J^P hypotheses are excluded: $0^- (6.7\sigma), 1^- (7.7\sigma), 2^- (5.2\sigma), 2^+ (7.6\sigma)$
- Evidence for the $Z_c(4430)^+$ at the 4.0σ significance level

\[
\mathcal{B}(\bar{B}^0 \rightarrow J/\psi K^- \pi^+) = (1.15 \pm 0.01 \pm 0.05) \times 10^{-3}
\]
\[
\mathcal{B}(\bar{B}^0 \rightarrow J/\psi K^*(892)) = (1.19 \pm 0.01 \pm 0.08) \times 10^{-3}
\]
\[
\mathcal{B}(\bar{B}^0 \rightarrow Z_c(4430)^+ K^-) \times \mathcal{B}(Z_c(4430)^+ \rightarrow J/\psi \pi^+) = (5.4^{+4.0+1.1}_{-1.0-0.9}) \times 10^{-6}
\]
\[
\mathcal{B}(\bar{B}^0 \rightarrow Z_c(4200)^+ K^-) \times \mathcal{B}(Z_c(4200)^+ \rightarrow J/\psi \pi^+) = (2.2^{+0.7+1.1}_{-0.5-0.6}) \times 10^{-5}
\]
\[
\frac{\mathcal{B}(Z_c(4430)^+ \rightarrow \psi(2S)\pi^+)}{\mathcal{B}(Z_c(4430)^+ \rightarrow J/\psi \pi^+)} \sim 10
\]
Resonant structure of $\Upsilon(5S) \to (b\bar{b})\pi^+\pi^-$

Two peaks in all 5 modes

minimal quark content

$|b\bar{b}u\bar{d}\rangle$

flavor-exotic states

Dalitz plot analysis

no non-res. contribution

$M[h_b(1P)\pi^\pm]$
Fit results

Average over 5 channels

\[M_1 = 10607.2 \pm 2.0 \text{ MeV} \]
\[\Gamma_1 = 18.4 \pm 2.4 \text{ MeV} \]
\[M_{Z_b} - (M_B + M_{B^*}) = + 2.6 \pm 2.1 \text{ MeV} \]

\[M_2 = 10652.2 \pm 1.5 \text{ MeV} \]
\[\Gamma_2 = 11.5 \pm 2.2 \text{ MeV} \]
\[M_{Z_b'} - 2M_{B^*} = + 1.8 \pm 1.7 \text{ MeV} \]

Angular analysis \(\Rightarrow \) both states are \(J^P = 1^+ \)
Decays \(\Rightarrow \) \(I^G = 1^+ \) (\(C = - \) for \(Z_b^0 \))

Proximity to thresholds favors molecule over tetraquark

\[Z_b \sim |B B^*_B\rangle = |\begin{array}{c}
\uparrow \\
\downarrow \\
\end{array}\rangle + |\begin{array}{c}
\downarrow \\
\uparrow \\
\end{array}\rangle \]
\[h_b(m_P)\pi \]
S-wave not suppressed

\[Z_b' \sim |B^* B^*_B\rangle = |\begin{array}{c}
\uparrow \\
\uparrow \\
\end{array}\rangle - |\begin{array}{c}
\downarrow \\
\downarrow \\
\end{array}\rangle \]

Phase btw \(Z_b \) and \(Z_b' \) amplitudes is \(\sim 0^\circ \) for \(Y(nS)\pi\pi \) and \(\sim 180^\circ \) for \(h_b(m_P)\pi\pi \)

Bondar et al, PRD84,054010(2011)
Observation of $Z_b \rightarrow B\bar{B}^*$ and $Z_{b'} \rightarrow B^*\bar{B}^*$

<table>
<thead>
<tr>
<th>Channel</th>
<th>Fraction, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Upsilon(1S)\pi^+$</td>
<td>0.32 ± 0.09</td>
</tr>
<tr>
<td>$\Upsilon(2S)\pi^+$</td>
<td>4.38 ± 1.21</td>
</tr>
<tr>
<td>$\Upsilon(3S)\pi^+$</td>
<td>2.15 ± 0.56</td>
</tr>
<tr>
<td>$h_b(1P)\pi^+$</td>
<td>2.81 ± 1.10</td>
</tr>
<tr>
<td>$h_b(2P)\pi^+$</td>
<td>4.34 ± 2.07</td>
</tr>
<tr>
<td>$B^+\bar{B}^0 + \bar{B}^0B^$</td>
<td>86.0 ± 3.6</td>
</tr>
<tr>
<td>$B^{*+}\bar{B}^*0$</td>
<td>-</td>
</tr>
</tbody>
</table>

$BF[Z_{b'} \rightarrow B\bar{B}^*] = (25 \pm 10)\%$ insignificant

If included, other fractions of $Z_{b'}$ are reduced by 1.33.

$Z_{b'} \rightarrow B\bar{B}^*$ is suppressed w.r.t. $B^*\bar{B}^*$ despite much larger PHSP.

Explanations:

Molecule \Rightarrow admixture of $B\bar{B}^*$ in $Z_{b'}$ is small, challenging for tetraquark?
Zb states seems to have neutral partner

\[\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^0 \pi^0 \] decay

In this fit mass and width are fixed from the charged Zb result.

Combined significance for the two modes is 6.5\(\sigma \)
$Z_{b \pm}$ states cannot be bottomonium

$Z^+ = b \bar{d}$ \quad $Z^- = b \bar{u}$

Decays to $h_b(nP)$ or $\gamma(nS)$ \Rightarrow must contain a $b \bar{b}$ pair

Has electric charge \Rightarrow must contain u and d quarks
\[B\bar{B}^* \text{ and } B^*\bar{B}^* \text{ molecules} \]

\[Z_{b(106010)}^\pm \]

\[\begin{align*}
 M_{Z_{b(106010)}} - (M_B + M_{B^*}) &= +3.9 \pm 2.1 \text{ MeV} \\
 M_{Z_{b(106050)}} - 2M_{B^*} &= +3.2 \pm 1.6 \text{ MeV}
\end{align*} \]

B-B* “molecule”

B*-B* “molecule”

Slightly unbound threshold resonances??
Back to charmonium: $Y(4260)$ in ISR

- No $X(3872)$
- Observed $Y(4260)$

From single-resonance fit:
- $N = 125 \pm 23$
- $M = 4259 \pm 8^{+2}_{-6} \text{ MeV/}c^2$
- $\Gamma = 88 \pm 23^{+6}_{-4} \text{ MeV}$
- $\Gamma(Y \rightarrow e^+e^-) \cdot B(Y \rightarrow J/\psi\pi^+\pi^-) = 5.5 \pm 1.0^{+0.8}_{-0.7} \text{ eV}$
- $J^{PC} = 1^{--}$ (ISR production)

Current statistics does not allow a significant discrimination between single- and multi-resonance hypothesis
Observation of $Z^+(3900)$ state in $\pi J/\psi$ spectra

Charged ➔ Cannot be a conventional charmonium state, must contain 4 quarks

$$M = 3899 \pm 3.6 \pm 4.9\text{MeV}$$
$$= 46 \pm 10 \pm 20\text{MeV}$$

Produced by running at the energy of $Y(4260)$

Produced by running at the energy of $Y(4260)$

$$M = 3894 \pm 6.6 \pm 4.5\text{MeV}$$
$$= 63 \pm 24 \pm 26\text{MeV}$$

Using $Y(4260)$ decays in ISR

Using $Y(4260)$ decays in ISR

PRL 110 (2013) 252001

PRL 110 (2013) 252002
New Particle scorecard:

\[
Z_b(106010)\pm \quad Z_b(106050)\pm \quad Z_c(3900)\pm
\]

QUARK SOUP
Researchers at colliders in China and Japan have succeeded in making exotic matter comprising four quarks, but are still debating whether the fleeting particles are meson pairs or true tetraquarks.

ORDINARY MATTER
- Baryon
- Meson

EXOTIC MATTER
- Meson ‘molecule’
- Tetraquark

Diagram:
- Ordinary matter: Baryon and Meson
- Exotic matter: Meson ‘molecule’ and Tetraquark
Hadron spectroscopy is one of most exciting and pursued areas by the e^+e^- flavour factories and hadron collider experiments.

Some of the selected charmonium and bottomonium states are presented here that look very much exotic in nature.

These recent discoveries have created a renewed interest in the quarkonium sector and are pushing our friends over the corridor to the extreme(!).

Look for more such results from LHC, especially LHCb, the upcoming Belle-II and other experiments (PANDA…).

Thank you very much for your attention.
Summary and outlook

- Though close to five years have passed away since the last data taking, Belle continues to produce high-quality results.

- A small sample of those are presented here, based on the full data statistics:
 - First observation of D^0-\bar{D}^0 mixing using $D \rightarrow K\pi$ decays in e^+e^- collisions.
 - 2.5σ indication for D^0-\bar{D}^0 mixing and no sign of CPV in $D \rightarrow K_S^0\pi^+\pi^-$.
 - An order-of-magnitude improvement over the previous result for A_{CP} in the $D \rightarrow \pi^0\pi^0$ decay.
 - 1.8σ discrepancy with respect to the SM prediction for the lepton forward-backward asymmetry at low q^2 in inclusive $B \rightarrow X_s\ell^+\ell^-$ decays.
 - First observation of the $b \rightarrow s$ penguin decay $B \rightarrow \eta'K^*(892)^0$.
 - Observation of another charged charmonium-like state in $B \rightarrow J/\psi K\pi$.

- The unique explorations at the intensity frontier will continue with the start of Belle II.

 - Refer to yesterday’s talk by P. Urquijo.