$e^+e^- \text{ to charm cross sections via ISR}$

Galina Pakhlova
ITEP, Belle collaboration
Motivation to study cross sections $e^+e^- \rightarrow \text{open charm}$

Parameters of the $J^{PC} = 1^{-+}$ conventional charmonia

$\psi(3770), \psi(4040), \psi(4160), \psi(4415)$

$M, \Gamma_{\text{tot}}, \Gamma_{ee}$ remain quite uncertain and model dependent

To fix the resonance parameters we need to know their decay channels to take into account their interference:

- non-resonant contribution
- many open charm thresholds
All possible two-body decays of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ are included

$$\psi(3770) \Rightarrow D\bar{D};$$
$$\psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s;$$
$$\psi(4160) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}^*_s;$$
$$\psi(4415) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}^*_s, D_s^*\bar{D}_s^*.$$

Significant effect of interference: model dependent!

To reduce model dependence we need to measure exclusive cross sections to open charm final states.

<table>
<thead>
<tr>
<th>ψ</th>
<th>M, MeV</th>
<th>Γ_{tot}, MeV</th>
<th>Γ_{ee}, keV</th>
<th>δ, deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi(3770)$</td>
<td>3772.92 ± 0.3</td>
<td>27.3 ± 1.0</td>
<td>0.265 ± 0.018</td>
<td>PDG09</td>
</tr>
<tr>
<td></td>
<td>3772.0 ± 1.9</td>
<td>30.4 ± 8.5</td>
<td>0.22 ± 0.05</td>
<td>0</td>
</tr>
<tr>
<td>$\psi(4040)$</td>
<td>4039 ± 1</td>
<td>80 ± 10</td>
<td>0.86 ± 0.07</td>
<td>PDG09</td>
</tr>
<tr>
<td></td>
<td>4039.6 ± 4.3</td>
<td>84.5 ± 12.3</td>
<td>0.83 ± 0.20</td>
<td>130 ± 4.6</td>
</tr>
<tr>
<td>$\psi(4160)$</td>
<td>4153 ± 3</td>
<td>103 ± 8</td>
<td>0.83 ± 0.07</td>
<td>PDG09</td>
</tr>
<tr>
<td></td>
<td>4191.7 ± 6.5</td>
<td>71.8 ± 12.3</td>
<td>0.48 ± 0.22</td>
<td>293 ± 5.7</td>
</tr>
<tr>
<td>$\psi(4415)$</td>
<td>4421 ± 4</td>
<td>62 ± 20</td>
<td>0.58 ± 0.07</td>
<td>PDG09</td>
</tr>
</tbody>
</table>
Potential models & ψ states

Mass spectrum
- In general agreement with data

Open charm decays
- via nonperturbative gluodynamics
 - difficult to compute
 - good probes of strong QCD
- Only inclusive measurements

More theoretical and experimental efforts are required

Table:

<table>
<thead>
<tr>
<th>State</th>
<th>Mode</th>
<th>PDG09</th>
<th>(^3P_0)</th>
<th>(\rho K \rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi(3770))</td>
<td>(\psi(3770))</td>
<td>27.3 ± 1.0</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>(\psi(4040))</td>
<td>(\psi(4040))</td>
<td>0.1</td>
<td>2.3</td>
<td>25</td>
</tr>
<tr>
<td>(\psi(4040))</td>
<td>(\psi(4040))</td>
<td>25</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>(\psi(4160))</td>
<td>(\psi(4160))</td>
<td>12</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(\psi(4415))</td>
<td>(\psi(4415))</td>
<td>27</td>
<td>2.6</td>
<td>6</td>
</tr>
<tr>
<td>(\psi(4415))</td>
<td>(\psi(4415))</td>
<td>62 ± 20</td>
<td>60</td>
<td>?</td>
</tr>
</tbody>
</table>

E. Swanson, Phys. Reports 429(2006)

Table:

<table>
<thead>
<tr>
<th>State</th>
<th>PDG09</th>
<th>GI85</th>
<th>F91</th>
<th>EQ94</th>
<th>ZVR95</th>
<th>EFG03</th>
<th>BGS05</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1^3S_1) (J/\psi)</td>
<td>3096.919 ± 0.011</td>
<td>3098</td>
<td>3104</td>
<td>3097</td>
<td>3100</td>
<td>3096</td>
<td>3090</td>
</tr>
<tr>
<td>(2^3S_1) (\psi(2S))</td>
<td>3686.09 ± 0.04</td>
<td>3676</td>
<td>3670</td>
<td>3686</td>
<td>3730</td>
<td>3686</td>
<td>3672</td>
</tr>
<tr>
<td>(1^3D_1) (\psi(3770))</td>
<td>3772.92 ± 0.35</td>
<td>3819</td>
<td>3840</td>
<td>3800</td>
<td>3798</td>
<td>3785</td>
<td></td>
</tr>
<tr>
<td>(3^3S_1) (\psi(4040))</td>
<td>4039 ± 1</td>
<td>4100</td>
<td></td>
<td>4180</td>
<td>4088</td>
<td>4072</td>
<td></td>
</tr>
<tr>
<td>(2^3D_1) (\psi(4160))</td>
<td>4153 ± 3</td>
<td>4194</td>
<td></td>
<td>4142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4^3S_1) (\psi(4415))</td>
<td>4421 ± 4</td>
<td>4450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phi to Psi 2009

Galina Pakhlova
One more reason to study e^+e^- to charm cross sections

The nature of the charmoniumlike 1^{--} family with masses above open charm threshold remains unclear
 - Their properties are inconsistent with conventional charmonium
$e^+e^- \rightarrow J/\psi \pi^+\pi^- \gamma_{\text{ISR}}$

Y(4260) ... Y(4008)?

- **First Y(4260)**
 - 8σ
 - 233 fb$^{-1}$

- **Y(4260)**
 - 454 fb^{-1}
 - 344 \pm 39 ev
 - 7.5 \pm 0.9 \pm 0.8

- **Y(4008)**
 - arXiv:0808.1543
 - NEW
 - Absence of open charm production is inconsistent with conventional charmonium (< 0.7 90% CL)

Solution 1

- **Y(4260)**

Solution 2

- **Y(4008)**

Confirmed

- **PRD 74,091104R (2006)**
 - 5.4σ
 - 13.3 fb$^{-1}$

- **PR 96,162003 (2006)**
 - 11σ

Phi to Psi 2009

Galina Pakhlova
Absence of open charm production is inconsistent with conventional charmonium.
Y states vs inclusive cross section $e^+e^-\rightarrow\text{hadrons}$

$$R(s) = \frac{\sigma(e^+e^-\rightarrow\text{hadrons})}{\sigma(e^+e^-\rightarrow\mu^+\mu^-)} - R_{uds}$$

- Peak positions for $M(J/\psi\pi\pi)$ & $M(\psi(2S)\pi\pi)$ significantly different
- $Y(4260)$ mass corresponds to dip in inclusive cross section

if $R_{uds}=2.285\pm0.03$ Durham Data Base

BES(2002)
Cleo_c(2008)

Phi to Psi 2009

Galina Pakhlova
Potential models & Y states

No room for Y states among conventional 1^{--} charmonium

S.Godfrey and N.Isgur PRD32,189 (1985)

$3^3S_1 = \psi(4040)$

$2^3D_1 = \psi(4160)$

$4^3S_1 = \psi(4415)$

masses of predicted

3^3D_1 (4520)

5^3S_1 (4760)

4^3D_1 (4810)

are higher (lower)
Interpretations of Y states

- **Y(4360) & Y(4660) are conventional charmonia with shifted masses**
 - \(Y(4360) = 3^3D_1 \), \(Y(4660) = 5^3S_1 \)
 - \(4^3S_1 \neq \psi(4415) = 4^3D_1(4661); Y(4360)=4^3S_1(4389) \), \(Y(4660)=5^3S_1(4614) \) or \(4^3D_1(4661) \)

- **Charmonium hybrids**
 - *Zhu S.L.; Close F.E.; Kou E. and Pene O.*
 - The lightest hybrid is expected by LQCD around 4.2 GeV
 - The dominant decays \(Y(4260) \rightarrow D(*)D(*)\pi \), via virtual \(D^{**} \)

- **Hadro-charmonium**
 - Specific charmonium state “coated” by excited light-hadron matter
 - *S.Dubinskiy, M.B.Voloshin, A.Gorsky*

- **Multiquark states**
 - \([cq][cq]\) tetraquark
 - \(DD_1 \) or \(D^*D^0 \) molecules
 - *Maiani L., Riquer V., Piccinini F., Polosa A.D.*
 - *Swanson E.; Rosner J.L., Close F.E.*

- **Heavy meson hadronic molecules**
 - \(Y(4660) \) is \(\psi(2S)f_0(980) \) bound state
 - *F.K.Gou, C.Hanhart, S.Krewald, U.G.Meissner*

- **S-wave charm meson thresholds**
 - *Lui X.*
Use ISR to measure open charm exclusive final states

ISR at B factories
- Quantum numbers of final states are fixed $J^{PC} = 1--$
- Continuous ISR spectrum:
 - access to the whole \sqrt{s} interval
- α_{em} suppression compensated by huge luminosity
 - comparable sensitivity to energy scan (CLEOc, BES)
$e^+e^- \rightarrow \text{DD}$ via ISR with full reconstruction

- **Full reconstruction** of hadronic part
- ISR photon detection is not required
 - but used if it is in the detector acceptance
- Translate measured DD mass spectrum to cross section

\[s = E_{\text{cm}}^2 - 2E_{\gamma}E_{\text{cm}} \]
• Broad structure around 3.9 GeV
 • in qualitative agreement with coupled-channel model?
• Some structure at 4.0-4.2 GeV
 • Statistics are small …$\psi(4040)$? $\psi(4160)$?
• Hint of $\psi(4415)$
$e^+e^- \rightarrow D(\ast)D^*$ via ISR with partial reconstruction

DD* & D*D
- **D* partial reconstruction**
 - increase eff $\sim 10\text{-}20$ times
- Detection of ISR photon
- Translate measured mass recoil against $\gamma_{\text{ISR}} \equiv D(\ast)D^*$ mass spectrum to cross section

γ
Exclusive $e^+e^- \rightarrow D^{(*)}D^*$ cross-sections

Systematic errors \approx statistical errors

- D^*D^*
 - complicated shape of cross section
- DD^*
 - clear dip at $M(D^*D^*) \sim 4260$ GeV (similar to inclusive R)
- DD^*
 - broad peak at threshold (shifted relative to 4040 GeV)

New BaBar: $e^+e^- \rightarrow D(\ast)D^*$

- Full reconstruction of hadronic part
- Both charged and neutral final states
- Fit by sum of ψ states with fixed masses & widths from PDG (due to limited statistics)

No evidence is found for $Y(4260) \rightarrow DD, DD^*, D^*D^*$

\[
\frac{\mathcal{B}(Y(4260) \rightarrow D^* \bar{D})}{\mathcal{B}(Y(4260) \rightarrow J/\psi \pi^+ \pi^-)} < 34
\]

\[
\frac{\mathcal{B}(Y(4260) \rightarrow D^* \bar{D}^*)}{\mathcal{B}(Y(4260) \rightarrow J/\psi \pi^+ \pi^-)} < 40
\]

Br ratios seem to disagree with potential models …

… uncertainties are too large

<table>
<thead>
<tr>
<th>Ratio</th>
<th>measurement</th>
<th>3P_0</th>
<th>C^3 and ρK_ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) $\mathcal{B}(\psi(4040) \rightarrow D\bar{D})/\mathcal{B}(\psi(4040) \rightarrow D^* \bar{D})$</td>
<td>$0.24 \pm 0.05 \pm 0.12$</td>
<td>0.003</td>
<td>0.14 [14]</td>
</tr>
<tr>
<td>2) $\mathcal{B}(\psi(4040) \rightarrow D^* \bar{D}^)/\mathcal{B}(\psi(4040) \rightarrow D^ \bar{D})$</td>
<td>$0.18 \pm 0.14 \pm 0.03$</td>
<td>1.0</td>
<td>0.29 [14]</td>
</tr>
<tr>
<td>3) $\mathcal{B}(\psi(4160) \rightarrow D\bar{D})/\mathcal{B}(\psi(4160) \rightarrow D^* \bar{D}^*)$</td>
<td>$0.02 \pm 0.03 \pm 0.02$</td>
<td>0.46</td>
<td>0.08 [6]</td>
</tr>
<tr>
<td>4) $\mathcal{B}(\psi(4160) \rightarrow D^* \bar{D})/\mathcal{B}(\psi(4160) \rightarrow D^* \bar{D}^*)$</td>
<td>$0.34 \pm 0.14 \pm 0.05$</td>
<td>0.011</td>
<td>0.16 [6]</td>
</tr>
<tr>
<td>5) $\mathcal{B}(\psi(4400) \rightarrow D\bar{D})/\mathcal{B}(\psi(4400) \rightarrow D^* \bar{D}^*)$</td>
<td>$0.14 \pm 0.12 \pm 0.03$</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>6) $\mathcal{B}(\psi(4400) \rightarrow D^* \bar{D})/\mathcal{B}(\psi(4400) \rightarrow D^* \bar{D}^*)$</td>
<td>$0.17 \pm 0.25 \pm 0.03$</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>
Belle vs BaBar: $\sigma(e^+e^- \rightarrow D(\ast)D(\ast))$

New

Sum of two body open charm final states

Belle & BaBar results are in very good agreement

Phi to Psi 2009
Galina Pakhlova
Three-body final states

$D^0\ D^{(*)-}\pi^+$

- Full reconstruction of hadronic part
- ISR photon detection is not required
 - but used if it is in the detector acceptance
- Translate measured $DD^{(*)}\pi$ mass spectrum to cross section
Resonant structure in $\psi(4415) \rightarrow D^0 D^- \pi^+$

$M(D^0\pi^+) \text{ vs } M(D^-\pi^+)$ from $\psi(4415)$ region

- Clear $D^*_2(2460)$ signals
- No non-$D^*_2(2460)$ contribution

$M = 4411 \pm 7 \text{ MeV}$
$\Gamma_{\text{tot}} = 77 \pm 20 \text{ MeV}$
$N_{\text{ev}} = 109 \pm 25$

Consistent with BES,
PDG06, Barnes et al

$\sigma(e^+e^-\rightarrow\psi(4415)) \times Br(\psi(4415)\rightarrow DD^*_2(2460)) \times Br(D^*_2(2460)\rightarrow D\pi) = (0.74 \pm 0.17 \pm 0.07) \text{ nb}$

$Br(\psi(4415)\rightarrow D(D\pi)_{\text{non } D^*_2(2460)}/Br(\psi(4415)\rightarrow DD^*_2(2460)) < 0.22$
Partial reconstruction with anti-proton tag

Reconstruct Λ_c^+

Use antiproton tag from inclusive $\Lambda_c^- \rightarrow p^- X$

$\text{Br}(\Lambda_c^+ \rightarrow pX) = (50 \pm 16)\%$

- combinatorial background suppressed by ≈ 10

Detect the high energy ISR photon

Translate measured mass recoil against $\gamma_{\text{ISR}} \equiv \Lambda_c^+ \Lambda_c^-$ mass spectrum to cross section
partial reconstruction with \bar{p} tag

- Clear peak in $M_{\text{rec}}(\Lambda_c^+\gamma_{\text{ISR}})$ distribution at Λ_c mass.

At mass > 2.5 GeV/c^2
- Contributions from $\Lambda_c^+\Lambda_c^-\pi^0$
 - Could proceed via $\Lambda_c^+\Sigma^-$; violates isospin and should be strongly suppressed
- And $\Lambda_c^+\Lambda_c^-\pi\pi$
 - Could proceed via $\Lambda_c^+\Lambda_c(2595)^-$, $\Lambda_c^+\Lambda_c(2625)^-$, $\Lambda_c^+\Lambda_c(2765)^-$, $\Lambda_c^+\Lambda_c(2880)^-$

- Total reflection contributions < 5% (included in systematics)
- Look at $M_{\text{recoil}}(\gamma_{\text{ISR}}) \equiv$ Mass spectra of $\Lambda_c^+\Lambda_c^-$

$e^+e^-\rightarrow\Lambda_c^+\Lambda_c^-\gamma_{\text{ISR}}$

$X(4630)$

8.2 σ

670 fb$^{-1}$

Interpretations for X(4630)

- No peak-like structure

<table>
<thead>
<tr>
<th>State</th>
<th>M, MeV/c²</th>
<th>Γ_{tot}, MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(4630)</td>
<td>4634^{+8+5}_{-7-8}</td>
<td>92^{+40+10}_{-24-21}</td>
</tr>
<tr>
<td>Y(4660)</td>
<td>4664 ± 11 ± 5</td>
<td>48 ± 15 ± 3</td>
</tr>
</tbody>
</table>

- X(4630) = Y(4660) = charmonium state 5^{3}S_{1} or 4^{3}D_{1}
 J.Segovia, A.M.Yasser, D.R.Entem, F.Fernandez

- Charmonium state 6^{3}S_{1} B.Q.Li and K.T.Chao

- Threshold effect E.Beveren, G.Rupp

- Y(4660) = ψ(2S)f_{0}(980) bound state
 F.K.Gou, C.Hanhart, S.Krewald, U.G.Meissner

- Point-like baryons R.B.Baldini, S.Pacetti, A.Zallo

- X(4630) = Y(4660) D.V.Bugg

- X(4630) = Y(4660) = tetraquark D.Ebert, R.N.Fausov, V.O. Galkin

- Dibaryon threshold effect?
 • Like in B→pΛπ, J/ψ→γpp

- e^+e^→Λ_c^+Λ_c^-γ_{ISR}

- M(Λ_c^+Λ_c^-) 4.5 < M < 5.5 GeV/c²

- BABAR, DM2

- ce→ΛΛ via ISR

- ce→pp via ISR
Searching for hybrids via their favorite decay modes
$e^+e^- \rightarrow D^0D^{*-}\pi^+$ at $\sqrt{s} \sim 4$–5 GeV via ISR

- Full reconstruction
- No extra tracks
- Detection of γ_{ISR} is not required
 - if γ_{ISR} is detected
 - $M(D^0D^{*-}\pi^+\gamma_{\text{ISR}})$ is required $\sim E_{\text{cm}}$

Combinatorial bgs are estimated from sidebands D and D^*

Other bgs are small and taken into account

Small efficiency at threshold

arXiv:0908.0231

670 fb$^{-1}$
in $e^+e^- \rightarrow D^0 D^{*-}\pi^+ \gamma_{\text{isr}}$

$D_1(2420)^0 \rightarrow D^{*-}\pi^+ \leftarrow D_2(2460)^0$

$D^0 D^{*-}\pi^+ \leftrightarrow D^0 D_1(2420)^0 \; \& \; D^0 D_2(2460)^0$

e$^+e^- \rightarrow \psi(4415) \rightarrow D^0 D_2(2460)^0 \rightarrow D^0 D^{-}\pi^+$ is measured

Main problem is to separate $D^0 D_1(2420)^0$ from $D^0 D_2(2460)^0$

- $D_1(2420)^0 : \Gamma_{\text{tot}} = 20.4 \pm 1.7$ MeV
- $D_2(2460)^0 : \Gamma_{\text{tot}} = 43 \pm 4$ MeV (PDG08)

Both $D D_1$ & D^*D_2 are seen ...

but the statistics is not enough to study their mass spectra!

Phi to Psi 2009

Galina Pakhlova
New Exclusive $e^+e^-\rightarrow D^0D^{*-}\pi^+$ cross-section

- No evident structures: only UL’s!
- Baseline fit:
 - RBW for $\psi(4415)$ & threshold function for non-resonant contribution without interference between amplitudes
- To obtain limits on $X\rightarrow D^0D^{*-}\pi^+$,
 - $X=Y(4260), Y(4360), Y(4660), X(4630)$
 - perform four fits each with one of the X states, $\psi(4415)$ and non-resonant contribution
- Fix masses and total widths from PDG

Interference could increase these UL’s by factors of 2–4 depending on the final state (for destructive solutions)

\[
\sigma(e^+e^-\rightarrow\psi(4415)) \times \text{Br}(\psi(4415)\rightarrow D^0D^{*-}\pi^+) < 0.76 \text{ nb at 90\% CL}
\]
\[
\text{Br}(\psi(4415)\rightarrow D^0D^{*-}\pi^+) < 10.6 \% \text{ at 90\% CL}
\]

UL at 90\% CL

<table>
<thead>
<tr>
<th></th>
<th>$Y(4260)$</th>
<th>$Y(4350)$</th>
<th>$Y(4660)$</th>
<th>$X(4630)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(e^+e^-\rightarrow X) \times B(X \rightarrow D^0D^{*-}\pi^+)$, [nb]</td>
<td>0.36</td>
<td>0.55</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>$B_{ee} \times B(X \rightarrow D^0D^{*-}\pi^+)$, $[\times 10^{-6}]$</td>
<td>0.42</td>
<td>0.72</td>
<td>0.37</td>
<td>0.66</td>
</tr>
<tr>
<td>$B(X \rightarrow D^0D^{*-}\pi^+)/B(X \rightarrow \pi^+\pi^- J/\psi)$</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B(X \rightarrow D^0D^{*-}\pi^+)/B(X \rightarrow \pi^+\pi^- \psi(2S))$</td>
<td></td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Phi to Psi 2009
Galina Pakhlova
Contribution to the inclusive cross section
Y states vs exclusive cross sections

- Y(4008) mass coincides with DD* peak
- Y(4260) mass corresponds to dip in D*D* cross section
- Around Y(4360) mass all measured cross sections are smooth
- Y(4660) mass is close to $\Lambda_c^+\Lambda_c^-$ peak
- Significant “peak-like” enhancement near 3.9 GeV in e^+e^-→DD

Coupled channel effect? or something else?

Sum of all exclusive contributions

Only small room for unaccounted contributions

Limited inclusive data above 4.5 GeV

- Charm strange final states
- Charm baryons final states

Galina Pakhlova
Complicated thresholds behaviour

Need improved model to describe standard and to search for new states

E. Eichten - Fermilab
Phi to Psi 2009
6th International Workshop on Heavy Quarkonia - Nara, Japan - Dec. 2-5, 2008
Galina Pakhlova
In conclusion
As Six exclusive open charm final states are measured $DD, D^*D, D^*D^*, DD\pi, DD^*\pi, \Lambda_c\Lambda_c$

and Their sum is close to $e^+e^- \rightarrow \text{hadrons}$

Belle & BaBar & Cleo cross section measurements are nicely consistent with each other

... it’s time to describe these data by realistic common fit and to extract realistic parameters of ψ states ...

In charm meson final states no evident peaks corresponding to members of charmonium-like family are found!

Theoretical efforts to describe charm components of inclusive cross section are kindly requested!

$\Lambda_c\Lambda_c$
- enhancement at threshold, quantum numbers, mass and width are consistent with $Y(4660)$
- Various interpretations

All presented cross sections can be found in Durham Data Base
Thank you!