Rare decays of tau lepton at Belle

Searches for Lepton Flavor Violation and Second Class Current

Markus Bischofberger
Nara Women’s University
Lepton Flavor Violation

Even if neutrino masses are taken into account Lepton Flavor Violation (LFV) in the charged lepton sector is highly suppressed in the Standard Model.

In many new physics models LFV rates can be significantly enhanced (up to $O(10^{-7})$).

Observation of LFV is a clear sign for New Physics (NP).

Powerful tool for restricting parameter space of NP models.

The tau is the heaviest charged lepton:
- couples strongly to NP
- Many possible LFV decay modes
- Ideal place to search for NP

Higgs mediated

Supersymmetry

R-parity violation
Recent LFV searches at Belle

- $\tau \rightarrow 3$leptons (EPS2009)
 Updated to 782 fb$^{-1}$ (previously 543 fb$^{-1}$)

- $\tau \rightarrow lK_S$ (EPS2009)
 Updated to 671 fb$^{-1}$ (previously 261 fb$^{-1}$)

- $\tau \rightarrow lK_S K_S$ (EPS2009)
 Not previously studied at Belle or Babar
 CLEO UL @13.9 fb$^{-1}$: BR($\tau \rightarrow lK_S K_S$)$<$(2.2-3.4)$\times10^{-6}$
 Using 671 fb$^{-1}$ ($\times48$ CLEO data)

- $\tau \rightarrow lh'$ (arXiv:0908.3156, hep-ex)
 Update to 671 fb$^{-1}$ (previously 158 fb$^{-1}$)

- $\tau \rightarrow l f_0(980)$ (PLB672:317,2009)
 First search for this mode
 Using 671 fb$^{-1}$
KEKB and Belle

KEKB: $e^+(3.5\text{GeV}) \, e^-\,(8\text{GeV})$

$\sigma(\text{BB}) \approx 1.1\text{nb}$, $\sigma(\tau^+\tau^-) \approx 0.9\text{nb}$

→ a B-Factory is also a tau factory

Very high Luminosity

peak luminosity: $2.1 \times 10^{34}\text{cm}^{-1}\text{s}^{-1} =$ World record!

integrated Luminosity: $>900\text{ fb}^{-1} \rightarrow \sim 10^9\tau$-pairs

Belle detector

F/B asymmetric detector

good vertex resolution and particle identification

Lepton ID eff.: $\sim 90\%$

μ fake rate: $\sim 2\%$

e fake rate: 0.3%
LFV Event Selection

LFV event selection:

- select low multiplicity events
- separate in two sides using thrust axis
- use 1-prong decays of τ (BR: $\sim 85\%$) on one side to tag the event (tag side)
- Reduce backgrounds using kinematic information and particle ID

Kinematics of LFV can be fully reconstructed because missing energy originates only from tag side.
Signal and Backgrounds

Signal side:
- ϵ^-
- τ^-
- τ^+
- μ^-
- μ^+
- ν_{τ}

Tag side:
- $\bar{\nu}_{\tau}$

Phenomenology:
- Only tag side has neutrino(s).
- Both sides have neutrino(s).

2 photon process:
- f = leptons, quarks

Radiative Bhabha process:
- $e^+ e^-$
- γ
- \bar{f}

Many tracks:
- $e^+ q \bar{q}$
- e^-

10/16/09
Signal extraction

Since no neutrinos in studied LFV modes, invariant mass and energy on signal side are determined:

- $\Delta E = E_{\text{rec}} - E_{\text{beam}}$ (peaking at 0)
- M_{inv} (peaking at τ mass)

$(\Delta E \times M_{\text{inv}})$ plane is used for signal extraction

Blind analysis:

- To avoid bias in optimization of event selection region containing 90% of signal is blinded until event selection is finalized
- background is estimated from sideband data

- After un-blinding signal region, upper limits are calculated from observed number of events in the signal region

Event selection is optimized to get good sensitivity for discovery. Background reduction is crucial

- Limit depends on estimated background and signal efficiency
τ → 3leptons

- **Enhanced in SUSY Higgs to accessible level** (PLB566, 217, (2003))
- updated to 782fb⁻¹
- Remaining BGs
 - Bhabha
 - 2photon
 - \(e^+e^- \rightarrow e^+e^- \mu^+\mu^- \)
- We observe no events in signal region of all modes
- \(B(\tau → 3l)<(1.5–2.7)×10^{-8} \) at 90%CL
 ➔ Best available limits!

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\varepsilon (%))</th>
<th>(N_{BG}^{EXP})</th>
<th>(\sigma_{syst} (%))</th>
<th>UL ((\times10^{-8}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^-e^+e^-)</td>
<td>6.0</td>
<td>0.21+-0.15</td>
<td>9.8</td>
<td>2.7</td>
</tr>
<tr>
<td>(\mu^-\mu^+\mu^-)</td>
<td>7.6</td>
<td>0.13+-0.06</td>
<td>7.4</td>
<td>2.1</td>
</tr>
<tr>
<td>(e^-\mu^+\mu^-)</td>
<td>6.1</td>
<td>0.10+-0.04</td>
<td>9.5</td>
<td>2.7</td>
</tr>
<tr>
<td>(\mu^-e^+e^-)</td>
<td>9.3</td>
<td>0.04+-0.04</td>
<td>7.8</td>
<td>1.8</td>
</tr>
<tr>
<td>(\mu^-e^+\mu^-)</td>
<td>10.1</td>
<td>0.02+-0.02</td>
<td>7.6</td>
<td>1.7</td>
</tr>
<tr>
<td>(e^-\mu^+e^-)</td>
<td>11.5</td>
<td>0.01+-0.01</td>
<td>7.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

[EPS2009, Preliminary]
\[\tau \rightarrow lK_{S} \text{ and } \tau \rightarrow lK_{S}K_{S} \]

* Accessible in R-Parity violation models \((\tau \rightarrow lK_{S})\) and Higgs mediation \((\tau \rightarrow lK_{S}K_{S})\)

* Data 671 fb\(^{-1}\)

* Remaining BGs
 * Fake lepton + real Ks from \(e^+e^-\rightarrow qq\)

* No events in signal region for any mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\varepsilon (%))</th>
<th>(N_{BG})</th>
<th>(\sigma_{\text{syst}} (%))</th>
<th>(N_{\text{obs}})</th>
<th>(s_{90})</th>
<th>(B \times 10^{-8})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^{-} \rightarrow e^-K_0^{0}) S</td>
<td>10.2</td>
<td>0.18±0.18</td>
<td>6.6</td>
<td>0</td>
<td>2.25</td>
<td>2.6</td>
</tr>
<tr>
<td>(\tau^{-} \rightarrow \mu^-K_0^{0}) S</td>
<td>10.7</td>
<td>0.35±0.21</td>
<td>6.8</td>
<td>0</td>
<td>2.10</td>
<td>2.3</td>
</tr>
<tr>
<td>(\tau^{-} \rightarrow e^-K_0^{0}K_0^{0}) S</td>
<td>5.82</td>
<td>0.07±0.07</td>
<td>11.2</td>
<td>0</td>
<td>2.44</td>
<td>7.1</td>
</tr>
<tr>
<td>(\tau^{-} \rightarrow \mu^-K_0^{0}K_0^{0}) S</td>
<td>5.08</td>
<td>0.12±0.08</td>
<td>11.3</td>
<td>0</td>
<td>2.40</td>
<td>8.0</td>
</tr>
</tbody>
</table>

* \(B(\tau \rightarrow lK_{S}) < (2.3–2.6) \times 10^{-8} \) (90\% CL)
 * improvement of limits set by BaBar

* \(B(\tau \rightarrow lK_{S}K_{S}) < (7.1–8.0) \times 10^{-8} \) (90\% CL)
 * improvement by a factor of (31–43) with respect to CLEO’s results
\(\tau \rightarrow lhh' \)

- Accessible in MSSM-seesaw scenarios
- Data 671 fb\(^{-1}\)
- Dominant BG
 - \(\tau \rightarrow \nu \pi\pi \) with fake lepton
 - \(e^+e^- \rightarrow qq \)
- \(B(\tau \rightarrow lhh') < (3.3-16) \times 10^{-8} \) at 90\% CL
 ➔ Best available limits!

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\varepsilon (%))</th>
<th>(N_{BG})</th>
<th>(\sigma_{syst} (%))</th>
<th>(N_{obs})</th>
<th>(s_{90})</th>
<th>(B (10^{-8}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^- \rightarrow \mu^- \pi^+\pi^-)</td>
<td>3.69</td>
<td>1.12 ± 0.38</td>
<td>5.9</td>
<td>0</td>
<td>1.53</td>
<td>3.3</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^+ \pi^-\pi^-)</td>
<td>3.84</td>
<td>0.73 ± 0.25</td>
<td>5.9</td>
<td>0</td>
<td>1.77</td>
<td>3.7</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^- \pi^+\pi^-)</td>
<td>3.99</td>
<td>0.34 ± 0.15</td>
<td>6.0</td>
<td>0</td>
<td>2.15</td>
<td>4.4</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^+ \pi^-\pi^-)</td>
<td>3.91</td>
<td>0.10 ± 0.07</td>
<td>6.0</td>
<td>1</td>
<td>4.21</td>
<td>8.8</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^- K^+ K^-)</td>
<td>2.40</td>
<td>0.52 ± 0.23</td>
<td>6.7</td>
<td>0</td>
<td>1.92</td>
<td>6.8</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^+ K^- K^-)</td>
<td>2.07</td>
<td>0.00 ± 0.06</td>
<td>6.8</td>
<td>0</td>
<td>2.46</td>
<td>9.6</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^- K^+ K^-)</td>
<td>3.50</td>
<td>0.11 ± 0.08</td>
<td>6.5</td>
<td>0</td>
<td>2.35</td>
<td>5.4</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^+ K^- K^-)</td>
<td>3.28</td>
<td>0.05 ± 0.05</td>
<td>6.6</td>
<td>0</td>
<td>2.43</td>
<td>6.0</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^- \pi^+ K^-)</td>
<td>2.63</td>
<td>0.67 ± 0.14</td>
<td>6.3</td>
<td>2</td>
<td>5.05</td>
<td>16</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^- \pi^+ K^-)</td>
<td>3.02</td>
<td>0.33 ± 0.19</td>
<td>6.4</td>
<td>0</td>
<td>2.12</td>
<td>5.8</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^- K^+ \pi^-)</td>
<td>2.60</td>
<td>1.04 ± 0.32</td>
<td>6.3</td>
<td>1</td>
<td>3.34</td>
<td>10</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^- K^+ \pi^-)</td>
<td>2.98</td>
<td>0.57 ± 0.19</td>
<td>6.4</td>
<td>0</td>
<td>1.90</td>
<td>5.2</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^+ K^- \pi^-)</td>
<td>2.61</td>
<td>1.37 ± 0.21</td>
<td>6.3</td>
<td>1</td>
<td>3.16</td>
<td>9.4</td>
</tr>
<tr>
<td>(\tau^- \rightarrow e^+ K^- \pi^-)</td>
<td>2.83</td>
<td>0.10 ± 0.07</td>
<td>6.4</td>
<td>0</td>
<td>2.40</td>
<td>6.7</td>
</tr>
</tbody>
</table>
τ → l f_0(980)

- Accessible in Higgs mediation
- Data 671 fb\(^{-1}\)
- \(f_0(980) \rightarrow \pi^+\pi^-\)
 \(\Rightarrow\) mass restriction reduces BG significantly
- Remaining BG
 - \(e^+e^- \rightarrow qq\)
 - 2 photon: \(e^+e^- \rightarrow e^+e^-qq\)
- \(B(\tau \rightarrow l f_0) \times B(f_0 \rightarrow \pi^+\pi^-) < (3.2–3.4) \times 10^{-8}\)
 \(\Rightarrow\) first result for this mode!

<table>
<thead>
<tr>
<th>Mode</th>
<th>(\varepsilon) (%)</th>
<th>(N_{BG})</th>
<th>(\sigma_{syst}) (%)</th>
<th>(N_{obs})</th>
<th>(s_90)</th>
<th>(UL) (10^{-8})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^- \rightarrow e^- f_0(980))</td>
<td>5.80</td>
<td>0.10 ± 0.07</td>
<td>11.5</td>
<td>0</td>
<td>2.41</td>
<td>3.4</td>
</tr>
<tr>
<td>(\tau^- \rightarrow \mu^- f_0(980))</td>
<td>6.02</td>
<td>0.11 ± 0.08</td>
<td>10.8</td>
<td>0</td>
<td>2.40</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Implications for physics models

In SUSY–Seesaw models $B(\tau \rightarrow l f_0)$ can be estimated by

$$B = \left(\frac{7.3 \times 10^{-8} (\theta_5 = 7^\circ)}{4.2 \times 10^{-9} (\theta_5 = 30^\circ)} \right) |\delta_{32}|^2 \left(\frac{100}{m_{H^0}(\text{GeV})} \right)^4 \left(\frac{\tan \beta}{60} \right)^6$$

- θ_5 mixing between octet and singlet for f_0
- δ_{32} LFV parameter (0.1–10)
- Region of low Higgs mass and high $\tan \beta$ excluded (large uncertainties involved!)
- $\tau \rightarrow l f_0$ is at the moment one of the best channels for indirectly testing for Higgs
LFV Results

48 modes investigated at Belle and Babar
Sensitivity of $O(10^{-8})$ reached
Search for second class current

Weak current is classified into two types according to G parity transformation properties

- **1st class current** ($J^{PG} = 0^{--}, 1^{+-}, 1^{-+}$)
 - $\tau \rightarrow \nu \pi^+\pi^0$, $\tau \rightarrow \nu \pi^+\pi^-\pi^+$, ...

- **2nd class current** ($J^{PG} = 0^{+-}, 1^{++}$)
 - $\tau \rightarrow \nu \pi^+\eta$, $\tau \rightarrow \nu \pi^+\eta'$
 - violates isospin and G parity and has not been observed yet

Recent Searches at Belle with 670fb\(^{-1}\) data

- $\tau \rightarrow \nu \pi \eta$
 - with $\eta \rightarrow \pi^+\pi^-\pi^0$
 - theoretical pred. for BR: $O(10^{-6}–10^{-5})$
 (PRD78, 033006, (2008))

- $\tau \rightarrow \nu \pi \eta'$ (958)
 - with $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta \rightarrow \gamma \gamma$
 - theoretical pred. for BR: $O(10^{-6})$
 (PRD70, 033010, (2009))
Fit to $M_{3\pi}$ spectrum for η yield: $N_{\eta}^{\text{fit}} = 749.2 \pm 67.3$

Backgrounds containing η

- $N_{\tau \rightarrow \nu \pi \pi \eta} = 313.2 \pm 7.2$
- $N_{\tau \rightarrow \nu K \eta} = 42.4 \pm 2.3$
- $N_{\tau \rightarrow \nu K^* \eta} = 127.0 \pm 3.6$
- $N_{qq} = 75.7 \pm 11.7$

$N_{\eta}^{\text{sig}} = 190.9 \pm 68.6$ (stat.)

$= (N_{\eta}^{\text{fit}} - N_{\eta}^{\text{bg}})$

$\mathbf{B(\tau \rightarrow \nu \pi \eta) < 7.3 \times 10^{-5}}$

at 90% CL (preliminary)

central value: $(4.4 \pm 1.6 \pm 0.8) \times 10^{-5}$

(CLEO: $B < 1.4 \times 10^{-4}$ at 95% CL)
$\tau \to \nu \pi \eta'(958)$

η' is reconstructed from $\pi^+\pi^-\eta$ with $\eta \to \gamma \gamma$

Signal extraction
- fit for η' peak to get yield
- double Gauss + linear
- $N_{\eta'} = -2.9^{+24.5}_{-23.7}$ (stat.)
- no excess found

$\Rightarrow B(\tau \to \nu \pi \eta') < 6.1 \times 10^{-6}$ at 90% CL (preliminary)

central value: ($-0.47^{+3.97}_{-3.85} \pm 0.26$)$\times 10^{-6}$

BaBar: $B < 7.2 \times 10^{-6}$
(PRD77, 112002 (2008))
Summary

Lepton Flavor Violation

- Searches have been performed in many channels using $\sim 10^9$ τ decays
- so far no evidence has been observed

\Rightarrow Upper limit for branching ratios at $O(10^{-8})$
 - constraints for new-physics parameter space

Second class current

- Searches for $\tau \rightarrow \nu \pi \eta$ and $\tau \rightarrow \nu \pi \eta'$ (958)
- No clear evidence yet
- Improved limits for both channels
BACKUP
Prospects for LFV

- At Super B factory:
 - Integrated Luminosity $>10\text{ab}^{-1}$ or 10^{10} τ-pairs
 - Achievable limits depend linear in integrated luminosity
 - Sensitivity depends linear on BG level
Systematic Errors

<table>
<thead>
<tr>
<th>Source</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ηBG($\pi\pi^0\eta\nu$)</td>
<td>10.3</td>
</tr>
<tr>
<td>ηBG(K$\eta\nu$)</td>
<td>1.4</td>
</tr>
<tr>
<td>ηBG(K*$\eta\nu$)</td>
<td>7.4</td>
</tr>
<tr>
<td>ηBG(qq)</td>
<td>1.7</td>
</tr>
<tr>
<td>Signal shape</td>
<td>1.0</td>
</tr>
<tr>
<td>BG shape</td>
<td>10.8</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.4</td>
</tr>
<tr>
<td>Cross section</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track finding</td>
<td>3.4</td>
</tr>
<tr>
<td>leptonID</td>
<td>2.3</td>
</tr>
<tr>
<td>π/KID</td>
<td>0.9</td>
</tr>
<tr>
<td>π^0 recon</td>
<td>1.3</td>
</tr>
<tr>
<td>Br($\eta\rightarrow\pi\pi\pi^0$)</td>
<td>1.3</td>
</tr>
<tr>
<td>trigger</td>
<td>0.28</td>
</tr>
<tr>
<td>MC stat.</td>
<td>0.32</td>
</tr>
<tr>
<td>$\pi\eta$ dynamics</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Backgrounds containing η (PLB672,209(2009))

<table>
<thead>
<tr>
<th>mode</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow \nu \pi\pi^0 \eta$</td>
<td>$(1.35\pm0.03\pm0.07) \times 10^{-6}$</td>
</tr>
<tr>
<td>$\tau \rightarrow \nu K \eta$</td>
<td>$(1.58\pm0.05\pm0.09) \times 10^{-6}$</td>
</tr>
<tr>
<td>$\tau \rightarrow \nu K^* \eta$</td>
<td>$(1.34\pm0.12\pm0.09) \times 10^{-6}$</td>
</tr>
<tr>
<td>$\tau \rightarrow \nu \pi \eta \eta$</td>
<td>$<7.4\times 10^{-6}$</td>
</tr>
<tr>
<td>$\tau \rightarrow \nu K \eta \eta$</td>
<td>3.0×10^{-6}</td>
</tr>
</tbody>
</table>

$M_{\pi\eta} (=M_{4\pi})$ after subtraction of non-η background (determined from sideband data)