Introduction

- Heavy Quarkonia are ideal tool for testing QCD
- Charmonium-like states found at B-factories
- Conventional cc_bar – states found
 - Spectra incomplete
- Possible indications for exotic states
 - X(3872) → J/ψ π π π
 - Y(3940) → J/ψ ω; Y(4260)
 - Z+(4430) → ψ' π+
- Bottomonium-like states
 - Z+ b
Belle

• Belle Measurements:
 • Exotic charmonium-like states
 - X, Y, Z
 • $e^+ e^- \rightarrow \eta \ J/\psi$ via Initial State Radiation (ISR)
 • $B \rightarrow \chi_{c1,2} \gamma K$
 • $B_0 \rightarrow J/\psi \ K^- \pi^+$
 • First evidence for $\eta_b(2S)$
 • Exotic bottomonia-like states
 - $Y(nS,) \ \pi^+\pi^- \ through \ Z^+$
 - $h \ (m_P) \pi^+ \pi^- \ through \ Z^+$
X, Y, Z Particles – exotic charmonium-like states

- X(3872): strong signal
 - Properties still under investigation
 - \(M(X(3872)) = 3871.67 \pm 0.17 \text{ MeV} \)
 - \(\Gamma(X(3872)) < 1.2 \text{ MeV} \)
 - \(C = +1 \)
 - \(C = -1 \) partner or charged partner so far not found
 - \(JPC = 1^{++} \) or \(2^{--} \), no significant discrimination in fits so far
 - \(X(3872) \rightarrow J/\psi \pi^+ \pi^- \)
 - \(M \) just around \(D*D \)
- \(1^3D_2 = \psi_2 \)
- Y-series — Y(4260), Y(4360), Y(4660), (etc?)
 - Belle 673 fb\(^{-1}\):
 - \(M(Y(4360)) = 4361 \pm 9 \pm 9 \)
 - \(\Gamma(Y(4360)) = 74 \pm 15 \pm 10 \)
 - \(M(Y(4660)) = 4664 \pm 11 \pm 5 \)
 - \(\Gamma(Y(4660)) = 48 \pm 15 \pm 3 \)
 - Charged Z states (Z(4430)+, Z(4050)+, Z(4250)+)
- New charmonia:
 - X(3915)
 - Two photon process, \(\gamma \gamma \rightarrow J/\psi \omega \), \(J = 0 \) or \(J = 2 \)
 - Angular analysis ongoing
 - \(M = 3915 \pm 3 \pm 2 \text{ MeV} \)
 - \(\Gamma = 17 \pm 10 \pm 3 \text{ MeV} \)
\(e^+ e^- \rightarrow J/\psi \eta \) via ISR

- **ISR:**
 - coloured and/or charged objects in the initial state
 - gluon and/or photon radiation → corrections
 - only states with 1-- produced
 - Y family states found in \(\psi \pi^+ \pi^-\) studied via ISR
- **ISR** \(\eta J/\psi\) measured, with \(\eta\) reconstructed from \(\pi^+ \pi^- \pi^0\) and \(\gamma \gamma\) final states
- full data sample taken at Belle: \(771.6 \pm 10.6\) million (final data set) \(B B_\bar{B}\) events at \(\Upsilon(4S)\)

- fits to mass spectrum
 - unbinned maximum likelihood fit to \(\eta J/\psi\)
 - Breit-Wigner function of resonance decaying into final state
 - masses and widths in good agreement with \(\psi(4040)\) and \(\psi(4160)\)
 - \(B(\psi(4040) \rightarrow \eta J/\psi) = (0.62 \pm 0.17)\%\) → using \(\Gamma_{\psi(4040)} = (0.86 \pm 0.07)\) keV/c from PDG or \(B(\psi(4040) \rightarrow \eta \psi) = (1.22\pm0.26)\%\)
 - \(B(\psi(4160) \rightarrow \eta J/\psi) = (0.41 \pm 0.12)\%\) or \((1.42 \pm 0.28)\%\) → using PDG average
 - \(\Gamma_{\psi(4160)} = (0.83 \pm 0.07)\) keV/c^2
 - \(7.5\sigma\) and \(7.7\sigma\) → statistical significance of \(\psi(4040)\) and \(\psi(4160)\) respectively.
 - systematic Error: \(8.7\%\)
 - BRs imply widths of \(1\) MeV for J/psi eta transitions → quite large for charmonia above \(DD^*_\bar{B}\) threshold

07/19/12

Patricia Francisconi, HEPHY Vienna
$B^\pm \to \chi_{c1} \gamma K$ and $\chi_{c2} \gamma K$

- study of B meson decay into $\chi_{c1} \gamma K$ and $\chi_{c2} \gamma K$
- search for $X(3872)$ partner with C-parity=-1 and/or missing D-wave charmonia expected > 3.8GeV
- Calculation of branching fractions for $B \to \psi^\prime (\to \chi_{c1} \gamma)K$ and $B \to \psi^\prime (\to \chi_{c2} \gamma)K$
- 771.6 ± 10.6 million (final Belle $\Upsilon(4S)$ data set) used
- Signal and BG studied using MC
- MC/Data difference in scale
- Resolution callibrated with ψ^\prime
- in addition to psi', evidence of $\psi_2 \to \chi_{c1} \gamma$ found
- no $X(3872)$ signal found
- fit was done in 2D $M(\chi_{c1,2} \gamma)-M_{bc}$

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>$BR. (\times 10^{-4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \to \psi^\prime (\to \chi_{c1} \gamma)K$</td>
<td>7.60 ± 0.75</td>
</tr>
<tr>
<td>$B^- \to \psi^\prime (\to \chi_{c2} \gamma)K^-$</td>
<td>5.55 ± 0.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Yield</th>
<th>Mass (MeV/c2)</th>
<th>Width (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ^\prime</td>
<td>200 ± 19</td>
<td>3685.5 ± 0.7</td>
<td>0.304</td>
</tr>
<tr>
<td>$X(3820)$</td>
<td>38 ± 15</td>
<td>3823.5 ± 2.8</td>
<td>5.3 ± 8.2</td>
</tr>
</tbody>
</table>

Fig 1: Fit to $M(\chi_{c1} \gamma)$, red: red dashed for $B^\pm \psi^\prime (\to \chi_{c1} \gamma)K^\pm$, pink: $B^\pm \psi^\prime (\to \chi_{c2} \gamma)K^\pm$; purple dashed: BG components for $B^\pm \psi^\prime (\to \chi_{c1} \gamma)K^\pm$, cyan: rest of BG

$B^+ \to X(3820) (\to \chi_{c2} \gamma) K^+$
$B^- \to \psi^\prime (\to \chi_{c2} \gamma) K^-$

Combinatorial

$711 fb^{-1}$
\(\mathcal{B}^0 \rightarrow J/\psi \ K^- \ \pi^+ \)

- charged (exotic) \(Z^+ \) states observed by Belle in \(\psi' \ \pi^+ \), \(\chi_{c1} \ \pi^+ \)
- not confirmed by Babar
- search for \(Z^+\rightarrow J/\psi\pi\pi^+ \) via 4D amplitude analysis \(\mathcal{B}^0 \rightarrow J/\psi \ K^- \ \pi^+ \)
- all known \(K^* \rightarrow K\pi \) amplitudes included in signal fit; \(Z^+ \) contribution added
- analysis based on 711 fb\(^{-1}\) data sample collected by the Belle detector on the asymmetric \(e^+ e^- \) collider KEKB
- Gaussian signal and 3\(^{rd}\) order polynomial background distribution
- amplitude for the three-body decay \(\mathcal{B}^0 \rightarrow J/\psi \ K^- \ \pi^+ \) represented as sum of Breit-Wigner contributions for different intermediate two-body states
- angular independent part of the amplitude of \(\mathcal{B}^0 \rightarrow J/\psi \ K^- \ \pi^+ \) via two-body intermediate resonance \(R \)

07/19/12 Patricia Francisconi, HEPHY Vienna
B^0 \rightarrow J/\psi K^- \pi^+

- background distribution divided into 3 parts:
 - Background sources
 - K*(892) meson and random J/ψ
 - BG from K → π+ π−
 - combinatorial background from other sources
 - background from first two: peaking
 - background from third: not peaking

- search for X^+ with arbitrary mass and width
- J^P = 0^−, 1^+, 1^−, 2^+, 2^− considered
- 0+ impossible due to the parity conservation in X^+ → J/ψ π^+
- Search for X^+
 - No significant signal of X^+ found
 - Upper limits for branching fractions set
 \(\mathcal{B}(B^0 \rightarrow X^+ K^-) \times \mathcal{B}(X^+ \rightarrow J/\psi \pi^+) < 6.5 \times 10^{-6} \) (90% CL),
 \(\mathcal{B}(B^0 \rightarrow X^+ K^-) \times \mathcal{B}(X^+ \rightarrow J/\psi \pi^+) < 7.3 \times 10^{-6} \) (95% CL).

<table>
<thead>
<tr>
<th>TABLE VII: Fit results: X^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>J^P</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>X^+ \rightarrow J/ψ π^+</td>
</tr>
<tr>
<td>Mass, MeV</td>
</tr>
<tr>
<td>Width, MeV</td>
</tr>
<tr>
<td>Sign.</td>
</tr>
<tr>
<td>Fit fraction (data)</td>
</tr>
<tr>
<td>Fit fr. limit (90% CL)</td>
</tr>
<tr>
<td>Fit fr. limit (95% CL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B(B^0 \rightarrow X^+ K^-) \times \mathcal{B}(X^+ \rightarrow J/ψ \pi^+) limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% CL</td>
</tr>
<tr>
<td>95% CL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X(4460)^+ \rightarrow J/ψ K^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass, MeV</td>
</tr>
<tr>
<td>Width, MeV</td>
</tr>
<tr>
<td>Sign.</td>
</tr>
<tr>
<td>Fit fraction (data)</td>
</tr>
<tr>
<td>Fit fr. limit (90% CL)</td>
</tr>
<tr>
<td>Fit fr. limit (95% CL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B(B^0 \rightarrow X^+ K^-) \times \mathcal{B}(X^+ \rightarrow J/ψ \pi^+) limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% CL</td>
</tr>
<tr>
<td>95% CL</td>
</tr>
</tbody>
</table>

07/19/12 Patricia Francisconi, HEPHY Vienna
Evidence for η_b (2S) & observation of h_b (1P) $\rightarrow \eta_b$ (1S)γ and h_b (2P) $\rightarrow \eta_b$ (1S)γ.

- Data collected at Y(5S) used.
- First evidence for η_b (2S) using h_b (2P) $\rightarrow \eta_b$ (2S)γ.
- First observation of h_b (1P) $\rightarrow \eta_b$ (1S)γ and h_b (2P) $\rightarrow \eta_b$ (1S)γ.
- Mass and width of η_b (1S) and η_b (2S) measured to be:
 - m_{η_b} (1S) = 9402.4 ± 1.5 ± 1.8 MeV/c^2
 - m_{η_b} (2S) = 9999.0 ± 3.5 +2.8 MeV/c^2
 - and Γ_{η_b} (1S) = 10.8 + 4.0 + 4.5 MeV.
- Better agreement with theory and larger branching fractions than expected.
- B_{h_b} (2P) $\rightarrow \eta_b$ (2S)$\gamma = (47.5 \pm 10.5 +6.8\%)$.
- Update to h_b (1P) and h_b (2P) mass measurements.
- 133.4 fb$^{-1}$ data sample, at energies near Y(5S) resonance from Belle detector at the KEKB used.
- Belle collected largest data set at Y(5S).
 - Clean source for bottomonium spectrum.

Fig: (a) h_1 (1P) yield vs $M^{(1)}_{\text{miss}}$(π+ π−γ); (b) h_2 (1S) yield vs $M^{(2)}_{\text{miss}}$(π+ π−γ) in the η_b (1S) region; (c) η_b (2S) region; solid / dashed: fit results for signal and BG respectively.
Y(5S) → Y(nS,) π⁺π⁻ through Z⁺_b

- Belle 121-1 fb
- Analysis of: Y(5S) → Y(nS) π⁺π⁻
 n = (1,2)
 - two horizontal bands in Yπ⁺ max fitted with:
 \[A = A(Z^+) + A(Z^+) + A(f_0(980)) + \]
 \[A(f_2(1270)) + A(NR) \]
- JP = 1⁺ assumed
- angular analysis performed
 - Possible interpretations for Z+:
 - Molecule, coupled channel resonance, tetraquark

Fig 1: Dalitz plots for Y(nS)π⁺π⁻ events in (a) Y(1S); (b) Y(2S); (c) Y(3S) signal regions

Fig 2: Comparison of fit results with data for Y(1S) (top), Y(2S) (middle), Y(3S) (bottom) signal regions.
Hatched histograms represent BG

Fig 3: Angular distributions for Z₁(10610) signal region: (top) Y(2S) π candidates; (bottom) Y(3S) π candidates, as a function of cosθ₂ (middle column); open histograms represent fit results for different J^P hypotheses: (black) 1⁺, (red) 1⁻, (green) 2⁺, (blue) 2⁻
Y(5S) → h_{b} (mP)π^{+} π^{-} through Z^{+}_{b}

- Belle 121-1 fb
- Analysis of: h_{b} (mP)π^{+} π^{-}
 \(M = (1,2) \)
- JP = 1+ assumed
- angular analysis performed
- same \(Z_{b}^{+} \) in \(h \) π and Y(nS) π

Fig2: points: h_{b}(1P) yield as a function of \(\cos\theta_{1} \) (left); \(\cos\theta_{2} \) (middle); \(\cos\theta_{ππ} \) (right); (top) \(Z_{b}(10610) \); (bottom) \(Z_{b}(10650) \); histograms represent different J^P hypotheses: (black) 1^+, (red) 1^−, (blue) 2^−

Fig1: Comparison of \(Z_{b}(10610) \) and \(Z_{b}(10650) \) parameters obtained from different decay channels. The vertical dotted lines indicate B * B thresholds.

07/19/12 Patricia Francisconi, HEPHY Vienna
Summary

- Many new and exciting results
- Conventional quarkonia are being established
- unexpected exotic states, still only vaguely understood
- η_b and h_b finally found \rightarrow completing bottomonium table
- More information obtained to understand X,Y,Z
- More and exciting results to be expected from Belle II