Current Status
for CP Violation Measurements

Takeo Higuchi

Kavli IPMU, the University of Tokyo (WPI)

the Belle collaboration

the Belle II collaboration

Aug.13th, 2014

Physics at LHC and Beyond
Belle/KEKB, BaBar/PEP-II

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Detector</th>
<th>∫ Ldt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaBar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHC; DØ+CDF/Tevatron

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Detector</th>
<th>$\int L dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS, CMS, LHCb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DØ, CDF</td>
<td></td>
<td>$\sim 11 \text{ fb}^{-1}$</td>
</tr>
</tbody>
</table>
Unitarity Triangle

- $\phi_1 = (21.50^{+0.75}_{-0.74})^0$ (CKMfitter winter-2014)
 - $S_{c\bar{c}s} (\sin2\phi_{1\text{eff}}) = 0.682 \pm 0.019$ (HFAG winter-2014)
 - Belle (772M $B\bar{B}$ at Y(4S)): 0.667 \pm 0.023 \pm 0.012
 - BaBar (465M $B\bar{B}$ Y(4S)): 0.687 \pm 0.028 \pm 0.012
 - Belle (121fb$^{-1}$ at Y(5S) $\rightarrow B^0B^+\pi^-)$: 0.57 \pm 0.58 \pm 0.06
 - The neutral B meson flavor is tagged by the pion charge.
 - LHCb (1.0 fb$^{-1}$): 0.73 \pm 0.07 \pm 0.04
 - Manifestation of the time-dependent CP violation
 - Belle/BaBar: proper time difference of the two B mesons (Δt).
 - LHCb: absolute decay time of the B meson (t).
Unitarity Triangle

- $\phi_2 = (85.4^{+4.0}_{-3.9})^0$ (CKMfitter winter-2014)
- $S_{\pi^+\pi^-}(\sin 2\phi_{2\text{eff}}) = -0.66 \pm 0.06$ (HFAG winter-2014)
 - Belle (772M $B\bar{B}$ at $Y(4S)$): $-0.64 \pm 0.08 \pm 0.03$
 - BaBar (467M $B\bar{B}$ $Y(4S)$): $-0.68 \pm 0.10 \pm 0.03$
 - LHCb (1.0 fb$^{-1}$): $-0.71 \pm 0.13 \pm 0.02$
- $\phi_3 = (70.0^{+7.7}_{-9.0})^0$ (CKMfitter winter-2014)

- **Tensions** (CKMfitter winter-2014)
 - $\sigma_{\sin 2\phi_1} = 1.96$
 - $\sigma_{\phi_2} = 1.56$
 - $\sigma_{\phi_3} = 0.41$

\[\rho \]

CP Violation in $b \rightarrow sq\bar{q}$ Transition

- **Probe of a new physics (NP) beyond the SM**
 - Charmless B decays mediated by $b \rightarrow sq\bar{q}$ transition is sensitive to the NP that appears in the loop.

 - Deviation of $\delta S \equiv S_{c\bar{c}s} - S_{sq\bar{q}}$ from the SM expectation of $O(0.01–0.1)$ will indicate the NP.
CP Violation in \(b \rightarrow sq\bar{q} \) Transition

- \(B^0 \rightarrow \eta'K^{*0}\)
 \((K^{*0} \rightarrow K^+\pi^-, \eta' \rightarrow \eta\pi\pi)\)
 - Four-dim. fit of the \(B^0\) mass, energy, \(B^0 \leftrightarrow K^{*0}\) helicity angle, and \(q\bar{q}\) BG likelihood to the corresponding distributions gives \(Br = (2.6 \pm 0.7 \pm 0.2) \times 10^{-6}\).
 - The first \(5\sigma\) measurement.

- The direct \(CP\)-violating parameter is determined as well:

\[
A_{CP}(\eta'K^{*0}) = \frac{\Gamma(\overline{B}^0 \rightarrow \eta'K^-\pi^+) - \Gamma(B^0 \rightarrow \eta'K^+\pi^-)}{\Gamma(\overline{B}^0 \rightarrow \eta'K^-\pi^+) + \Gamma(B^0 \rightarrow \eta'K^+\pi^-)} = (-0.22 \pm 0.29 \pm 0.07)
\]
CP Violation in $b\rightarrow sq\bar{q}$ Transition

- $B^0 \rightarrow \eta'K^0$ ($\eta' \rightarrow \rho\gamma, \eta\pi\pi$)

 (HFAG winter-2014)

<table>
<thead>
<tr>
<th></th>
<th>$-\xi_f S_f$</th>
<th>A_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle</td>
<td>+0.68 ± 0.07 ± 0.03</td>
<td>+0.03 ± 0.05 ± 0.04</td>
</tr>
<tr>
<td>BaBar</td>
<td>+0.57 ± 0.08 ± 0.02</td>
<td>+0.08 ± 0.06 ± 0.02</td>
</tr>
<tr>
<td>Average</td>
<td>+0.63 ± 0.06</td>
<td>+0.05 ± 0.04</td>
</tr>
</tbody>
</table>

- The $-\xi_f S_f$ is consistent with $S_{c\bar{c}S}$.

Belle preliminary ($772M B\bar{B}$); BaBar, PRD 79, 052003 (2009) ($467M B\bar{B}$).
Kπ Puzzle in B→Kπ

- **The Kπ puzzle in B→Kπ**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(A_{CP}(K^+\pi^-))</th>
<th>(A_{CP}(K^+\pi^0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle</td>
<td>(-0.069\pm0.014\pm0.014)</td>
<td>(+0.043\pm0.024\pm0.002)</td>
</tr>
<tr>
<td>BaBar</td>
<td>(-0.107\pm0.016^{+0.006}_{-0.004})</td>
<td>(+0.030\pm0.039\pm0.010)</td>
</tr>
</tbody>
</table>

Non-zero \([A_{CP}(K^+\pi^-)-A_{CP}(K^+\pi^0)]\) indicates the effect of color-suppressed EW penguin amplitudes are significant.

- **The isospin sum rule**

\[
A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{B(K^0\pi^+)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} = A_{CP}(K^+\pi^0) 2B(K^0\pi^0) \frac{\tau_0}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) 2B(K^0\pi^0) \frac{\tau_0}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+}
\]

- NP contribution can be probed via the sum rule violation.
- Present deviation = 1.9σ (Belle).
Kπ Puzzle in B→K*π

- **Kπ puzzle in B→K*π**
 - The direct CP violation measurement in B→K*π can be another approach to the Kπ puzzle solution.

<table>
<thead>
<tr>
<th>Decay</th>
<th>Direct CP violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁰π⁺π⁰</td>
<td>0.07 ± 0.05 ± 0.03 ± 0.04</td>
</tr>
<tr>
<td>K⁺⁺(892)π⁺</td>
<td>-0.12 ± 0.21 ± 0.08 ± 0.11</td>
</tr>
<tr>
<td>K⁺⁺(892)π⁰</td>
<td>-0.52 ± 0.14 ± 0.04 ± 0.04</td>
</tr>
<tr>
<td>K⁰⁺(1430)π⁺</td>
<td>0.14 ± 0.10 ± 0.04 ± 0.14</td>
</tr>
<tr>
<td>K⁺⁺(1430)π⁰</td>
<td>0.26 ± 0.12 ± 0.08 ± 0.12</td>
</tr>
<tr>
<td>ρ⁺⁺(770)K⁰</td>
<td>0.21 ± 0.19 ± 0.07 ± 0.30</td>
</tr>
</tbody>
</table>

The first evidence (3.4σ) of the direct CP violation in B⁺→K⁺⁺π⁰ is obtained. The first measurements of $Br(B⁺→K⁰π⁺π⁰$ (inclusive)) = (45.9±2.6±3.0±8.6)x10⁻⁶ and $Br(B⁺→K⁺⁺(1430)π⁰) = (17.2±2.4±1.5±1.8)x10⁻⁶$ are obtained as well.

- Kinematical parameters ($m_{K⁰π⁺}$, $m_{K⁰π⁰}$) are used to isolate several $K⁰π⁺$ resonances in the data sample.
Dimuon Charge Asymmetry

- Dimuon charge asymmetry: \(A_{CP} \equiv \frac{N_{ev}(\mu^+ \mu^+) - N_{ev}(\mu^- \mu^-)}{N_{ev}(\mu^+ \mu^+) + N_{ev}(\mu^- \mu^-)} \)
 - \(N_{ev}(\mu^\pm \mu^\pm) \) ... number of events with same charge primary muons in the final state.

- SM prediction: \(A_{CP} = (-2.3^{+0.5}_{-0.6}) \times 10^{-4} \)

- Measurement by the DØ

\[DØ, \text{ PRD 89, 012002 (2014) (10.4 fb}^{-1}). \]

All categories combined.

\[A_{CP} = (-0.235^{+0.065}_{-0.055})\%, \quad 3.6\sigma \text{ deviation from the SM prediction.} \]

Hint for the NP?
B Meson Lifetimes

- *B* meson lifetimes = very important inputs to measure the time-dependent *CP* violation

 - World averages (HFAG winter-2014):
 \[
 (\tau_{B^0}, \tau_{B^+}, \tau_{B_s})
 = (1.519 \pm 0.005, 1.638 \pm 0.004, 1.512 \pm 0.007) \text{ ps}.
 \]

- **Remark: LHCb method**

 Direct measurement of the decay time distribution \(\exp(-t/\tau_B)\) enables to determine the resolution function more precisely than Belle/BaBar that measures the proper time *difference* distribution \(\exp(-|\Delta t|/\tau_B)\). The LHCb presented world best single measurement (arXiv:1402.2554).
B_s^-\bar{B}_s Mixing

- **B_s^-\bar{B}_s mixing** $\Delta m_s = \text{another important input}

 - The Δm_s is a key input to access to the CP-violating phase ϕ_s of the B_s system.

 - Since the $B_s^-\bar{B}_s$ oscillates very frequently, a large boost of the B_s (equivalent to a high resolution detector) is needed to observe the oscillation structure in the t distribution.

- **World average

 - $\Delta m_s = 17.761 \pm 0.022 \text{ ps}^{-1}$.

 - LHCb: $17.768 \pm 0.023 \pm 0.006 \text{ ps}^{-1}$.

 - CDF: $17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$.

LHCb, New J. Phys. 15, 053021 (2013) (1.0fb$^{-1}$);
CP Violation in \(B_s \) System

- **The \(CP \)-violating phase \(\phi_s^{c\bar{c}s} \) in \(B_s \to J/\psi X \)**
 - Interference between w/ and w/o the mixing enables to access to the \(CP \)-violating phase.
 - \(\phi_s^{c\bar{c}s} = \phi_{\text{Mixing}} - 2\phi_{\text{Decay}} \)
 \(\phi_{\text{Decay}} \approx 0 \) (SM) \(\Rightarrow \phi_s^{c\bar{c}s} \approx \phi_{\text{Mixing}} \approx 0.04 \) (SM prediction).

- **Analysis method: similar to the \(\phi_1 \) case**
 - Reconstruct \(B_s \to J/\psi X \) candidate; tag the opposite \(B \)-meson flavor (\(B/\bar{B} \)); obtain decay length (typically \(\approx 1.5 \) mm) and convert it to decay time; obtain the \(\phi_s^{c\bar{c}s} \) by the maximum likelihood fit.
CP Violation in \(B_s \) System

- \(\phi_{s}^{c\bar{c}s} = +0.00 \pm 0.07 \) (HFAG winter-2014)
 - ATLAS (4.9 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\phi} = -0.12 \pm 0.25 \pm 0.05 \text{ rad} \)
 - CMS (20 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\phi} = -0.03 \pm 0.11 \pm 0.03 \text{ rad (new)} \)
 - LHCb (3.0 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\pi\pi} = +70 \pm 68 \pm 8 \text{ mrad (updated)} \)
 - LHCb (1.0 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\KK} = 0.07 \pm 0.09 \pm 0.01 \text{ rad (new)} \)
 - CDF (9.6 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\pi\pi}: [-\pi/2, -1.51]\cup[-0.06, 0.30]\cup[1.26, \pi/2] \)
 - DØ (8 fb\(^{-1}\)): \(\phi_{s}^{J/\psi\phi} = -0.55^{+0.38}_{-0.36} \)

Data Plots

- **LHCb preliminary**
 - \(B_d \)
 - \(B_s \)

- **CMS preliminary**
 - \(B_s \)

Contour Plots

- 68% CL contours
 - \(\Delta \log \mathcal{L} = 1.15 \)

References

- CMS, CMS-PAS-BPH-13-012 (2014);
- LHCb, arXiv: 1405.4140 (2014);
- LHCb, PRD 87, 112010 (2014);
- CDF, PRL 109, 171802 (2012);
- DØ, PRD 85, 032006 (2012).
CP Violation in B_s System

- $\phi_s \phi \phi = -0.17 \pm 0.12 \pm 0.04$

 - The $B_s \to \phi \phi$ is a pure-penguin mode with $b \to sq\bar{q}$.
 - The SM predicts $\phi_s \phi \phi = 0$ with low uncertainty.
 - Angular analysis of the $B_s \to K^+K^-K^+K^-$:
 - x3 P-wave amplitudes: $A_0, A_{ll}(CP$-even), and $A_{\perp}(CP$-odd)
 - x2 S-wave amplitudes: $A_5(\phi f_0 \ CP$-odd) and $A_{ss}(f_0 f_0 \ CP$-even)
 - Observed distributions of θ_1, θ_2, and Φ by the LHCb

B Factory Upgrade: Belle II/SuperKEKB

- NP signatures (deviation from the SM prediction) are expected very small at the B factory energy ($\sqrt{s}=11\text{GeV}$) → large number of events are needed to catch NP signatures.

- $x40$ luminosity, $L = 8.0 \times 10^{35}\text{cm}^{-2}\text{s}^{-1}$.

- More granular resolution.
- Faster signal output.
- Robustness to higher BG.

The SuperKEKB commissioning will start in 2015.
Belle II Detector in a Nutshell

- Central drift chamber with smaller cell size and longer lever arm
- Time of propagation counters
- Ring image Čerenkov counters
- Fast & high bandwidth data acquisition system
- Large scale mass storage system
- More elaborate hardware trigger
- 2-layer DEPFET pixel
- 4-layer DSSD
- Electromagnetic calorimeters
 - barrel: CsI(Tl)
 - endcap: pure CsI
- $K_{\ell}\mu$ detector
 - barrel: RPC
 - endcap: scintillator + SiPM
CP Violation in $B^0 \rightarrow K^0_s \pi^0 \gamma (b \rightarrow s \gamma)$

As a consequence, $B^0 \rightarrow K^0_s \pi^0 \gamma$ behaves like an effective flavor eigenstate, and mixing-induced CP violation is expected small:

$$S_{b \rightarrow s \gamma}^{\text{SM}} \equiv (\sin 2\phi_1) \times \left(-\frac{2m_s}{m_b} \right)$$

Analysis procedure is similar to that of $B^0 \rightarrow (c\bar{c})K^0$.
CP Violation in $B^0 \to K^0 s \pi^0 \gamma (b \to s \gamma)$

\[S_{b \to s \gamma}^{SM} \equiv (\sin 2\phi_1) \times \left(-\frac{2m_s}{m_b} \right) \]

\[S_{b \to s \gamma}^{\text{average}} = -0.15 \pm 0.20 \]
(HFAG winter-2009)

\[S_{b \to s \gamma}^{NP} \equiv +0.67 \]

A NP (left-right symmetric model) may enhance CP violation in this decay.

D. Atwood et al., PRL 79, 185 (1997).

Prospect

\[\delta(S_{b \to s \gamma}) \sim 0.09 \at 5\text{ab}^{-1} \]
\[\delta(S_{b \to s \gamma}) \sim 0.03 \at 50\text{ab}^{-1} \]
CP Violation in $B^0 \rightarrow K^0_s \pi^0 \gamma (b \rightarrow s \gamma)$

- **Detection of the NP effect in the C_7'**
 - The C_7 and C_7' of the Wilson coefficients correspond to left- and right-handed EM penguin operator, respectively.
 - $C_7' \approx 0$ in the SM $\rightarrow C_7' \Rightarrow 0$ indicates the NP.
 - $Br(B \rightarrow X_s \gamma), S_{KS\pi^0\gamma},$ etc. give constraint on the C_7 and C_7'. Figures show the constraint in some extreme scenarios.

\[C_7^{(NP)} = 0, \quad C_7'^{(NP)} \in \text{complex} \]

\[C_7^{(NP)} = C_7'^{(NP)} \in \text{complex} \]

\[C_7^{(NP)} = -C_7'^{(NP)} \in \text{complex} \]
Belle II Vertex Detector

• Precise measurement of $S_{KS\pi^0\gamma}$ demands precision vertex detection and high K^0_S efficiency.
 – 2 layers of pixel detector
 + 4 layers of Si strip sensor array.

• System test at the DESY beam line in Jan. 2014
 – Good performance of the vertex detector is demonstrated together with its data acquisition system.
Kobayashi-Maskawa Unitarity

- Precise test of the Kobayashi-Maskawa unitarity

Combination of precise measurements on angles and sides of the unitarity triangle will test the unitarity of the Kobayashi-Maskawa matrix.

If unitarity is violated, 50ab⁻¹ data of the Belle II will reveal the violation, assuming the present values of the angles and sides are kept.
Summary

• Status of CP violation measurements by Belle, BaBar, ATLAS, CMS, LHCb, CDF, and DØ are presented.
 – The unitarity triangle, CP violation in the $b \rightarrow sq\bar{q}$, $K\pi$ puzzle, dimuon charge asymmetry, and CP violation in the B_s decay.

• Belle II, the upgraded B factory, is also summarized, together with some prospects for physics observables.

• SuperKEKB commissioning will start in 2015.
Backup Slides
CP Violation in $b \rightarrow sq\bar{q}$ Transition

Belle, PRD 90, 012002 (2014) (772M $B\bar{B}$).

- $B^0 \rightarrow \omega K^0$

<table>
<thead>
<tr>
<th></th>
<th>$-\xi_f S_f$</th>
<th>A_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle (772M $B\bar{B}$)</td>
<td>+0.91±0.32±0.05</td>
<td>−0.36±0.19±0.15</td>
</tr>
<tr>
<td>BaBar (467M $B\bar{B}$)</td>
<td>+0.55$^{+0.26}_{-0.29}$±0.02</td>
<td>−0.52$^{+0.22}_{-0.20}$±0.03</td>
</tr>
<tr>
<td>Average</td>
<td>0.71±0.21</td>
<td>−0.04±0.19±0.15</td>
</tr>
</tbody>
</table>

(HFAG winter-2014)

- The first evidence of the non-zero $-\xi_f S_f$ for the $B^0 \rightarrow \omega K^0$ is given.
Dimuon Charge Asymmetry

- **Dimuon charge asymmetry:** \(A_{CP} \equiv \frac{N_{ev}(\mu^+ \mu^+) - N_{ev}(\mu^- \mu^-)}{N_{ev}(\mu^+ \mu^+) + N_{ev}(\mu^- \mu^-)} \)

 - \(CP \) violation in mixing:
 \[\Gamma(B_{(s)}^0 \rightarrow \bar{B}_{(s)}^0 \rightarrow \mu^- X) \neq \Gamma(B_{(s)}^0 \rightarrow B_{(s)}^0 \rightarrow \mu^+ X) \]

 - \(CP \) violation in interference between w/ and w/o the mixing:
 \[\Gamma(B_{(s)}^0 \rightarrow \bar{B}_{(s)}^0 \rightarrow f_{CP}) \neq \Gamma(B_{(s)}^0 \rightarrow B_{(s)}^0 \rightarrow f_{CP}) \]
Dimuon Charge Asymmetry

- **SM prediction**
 - Dimuon charge asymmetry: \(A_{CP} = (-2.3^{+0.5}_{-0.6}) \times 10^{-4} \).

- **DØ measurement (single muon charge asymmetry)**
 - Test of the \(a_{CP} = 0 \) is a consistency check of the analysis procedure.

\[
a_{CP} \equiv \frac{n_{ev}(\mu^+) - n_{ev}(\mu^-)}{n_{ev}(\mu^+) + n_{ev}(\mu^-)}, \quad a_{CP}^{SM} \approx 10^{-5}
\]

\(a_{CP} = (-0.032 \pm 0.042 \pm 0.061)\% \), consistent with zero.

Events are categorized by \(p_T \), absolute value of the pesudorapidity, and impact parameter (integrated in the left figure) of the muon.
Dimuon Charge Asymmetry

- **DØ measurement (dimuon charge asymmetry)**

\[A_{CP} = (-0.235 \pm 0.065 \pm 0.055)\% , \]

3.6σ deviation from the SM prediction.

All categories combined.

Hint for the NP?
SuperKEKB Accelerator in a Nutshell

\[L = 8.0 \times 10^{35} / \text{cm}^2 \text{s} \]

Installation of new final focusing magnet
collision point resolution = 3mm

4.0GeV \(e^+ \)

4.0GeV \(e^- \) collision point

Improvements in beam pipe design

More RF cavities

Construction of damping ring
for low emittance \(e^+ \) beam
Belle II Vertex Detector

The very central part of the Belle II detector

- Silicon Vertex Detector (SVD): 4 layers of DSSDs
- Pixel Detector (PXD): 2 layers of DEPFET pixels

Pixel detector

Si strip sensor array
Belle II Vertex Detector

• A precision vertex detector is needed to measure the time-dependent CP-violating parameter $S_{KS\pi^0\gamma}$.

 – History
 • Belle (the 1st period): 3 layers of Si strip sensor array.
 • Belle (the 2nd period): 4 layers of Si strip sensor array.
 • Belle II: 2 layers of pixel detector + 4 layers of Si strip sensor array.

 – Improvement of the vertex resolution by a factor of ~ 2.

 – Improvement of the K^0_S vertex resolution by a longer lever arm than the Belle.
CP Violation Anomaly in B⁰/B⁺ Systems

- **NP contribution**

 Contribution from P_{EW} to the B^+ CP violation may be large due to a NP...

- **Check of the isospin sum rule**

 \[
 A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{B(K^0\pi^+)}{B(K^0\pi^-)} \frac{\tau_0}{\tau_+} = A_{CP}(K^+\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)}
 \]

 Four CP-violating parameters in the $K\pi$ system are needed. That in the $K^0\pi^0$ is only possible with Super B factory statistics.

 \[0.14 \pm 0.13 \pm 0.06 \text{ @ 600 fb}^{-1} \text{ (Belle)}\]

Prospect The sum rule can be checked with 10ab^{-1} data
CP Violation in $b \rightarrow sq\bar{q}$

Measurement of the CP-violating parameter in $b \rightarrow sq\bar{q}$ is not expected to be systematic dominant until $50 ab^{-1}$ data with elaborated tunings of vertex detectors.

The Belle II may find a NP effect in the $b \rightarrow sq\bar{q}$ with $50 ab^{-1}$ data assuming the present discrepancy holds.

Prospect $\delta(S_{b \rightarrow s}) \sim 0.012 \; @ \; 50 ab^{-1}$
Why Do Expect NP in TeV Scale?

• Hierarchy problem
 – Standard-Model Higgs mass $m_H = 126 \text{ GeV/c}^2$, while because of a diagram shown below, the it will receive correction as $m_H^2 = (m_H^0)^2 + O(\Lambda^2)$, where Λ is a scale of new physics.
 – If no new physics until the Planck scale $O(10^{18}\text{GeV/c}^2)$, Λ and consequently m_H will be $\sim O(10^{18}\text{GeV/c}^2)$ as well; we can expect $\Lambda < O(1\text{TeV/c}^2)$.
 – In SUSY words, the upper diagram is canceled by the lower one.
Complementarity (Belle II & LHCb)

Energy frontier

Direct detection of SUSY particles

Mass spectra are insufficient to figure out the SUSY model.

Similar mass spectra show up across different SUSY models.

Luminosity frontier

Measurements between SUSY-SUSY and/or SUSY-SM interactions

Various analyses on B, τ, charm, ... decays enable to reveal the SUSY model.
Complementarity (Belle II & LHCb)

<table>
<thead>
<tr>
<th>Observable</th>
<th>SM prediction</th>
<th>Theory error</th>
<th>Present result</th>
<th>Future error</th>
<th>Future Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{us}</td>
<td>$ [K → πν]ℓ</td>
<td>input</td>
<td>0.5% → 0.1%$_{\text{Latt}}$</td>
<td>0.2246 ± 0.0012</td>
</tr>
<tr>
<td>$</td>
<td>V_{cb}</td>
<td>$ [B → X_s(0)τ]</td>
<td>input</td>
<td>1%</td>
<td>$(41.54 ± 0.73) \times 10^{-3}$</td>
</tr>
<tr>
<td>$</td>
<td>V_{ub}</td>
<td>$ [B → πν]ℓ</td>
<td>input</td>
<td>10% → 5%$_{\text{Latt}}$</td>
<td>$(3.36 ± 0.36) \times 10^{-2}$</td>
</tr>
<tr>
<td>γ [B → DK]ℓ</td>
<td>input</td>
<td>< 1°</td>
<td>$(70^{+27}_{-30})^{0}$</td>
<td>3°</td>
<td>LHCb</td>
</tr>
<tr>
<td>$S_{B_s\to\phi K}$</td>
<td>sin(2β)</td>
<td>≤ 0.01</td>
<td>0.671 ± 0.023</td>
<td>0.01</td>
<td>LHCb</td>
</tr>
<tr>
<td>$S_{B_s\to\phi\phi}$</td>
<td>0.036</td>
<td>≤ 0.01</td>
<td>0.81$^{+0.12}_{-0.32}$</td>
<td>0.01</td>
<td>LHCb</td>
</tr>
<tr>
<td>$S_{B_d\to\phi K}$</td>
<td>sin(2β)</td>
<td>≤ 0.05</td>
<td>0.44 ± 0.18</td>
<td>0.1</td>
<td>LHCb</td>
</tr>
<tr>
<td>$S_{B_d\to\phi\phi}$</td>
<td>0.036</td>
<td>≤ 0.05</td>
<td>—</td>
<td>0.05</td>
<td>LHCb</td>
</tr>
<tr>
<td>$S_{B_d\to K\gamma}$</td>
<td>few × 0.01</td>
<td>0.01</td>
<td>$-0.16 ± 0.22$</td>
<td>0.03</td>
<td>Super-B</td>
</tr>
<tr>
<td>$S_{B_s\to\phi\gamma}$</td>
<td>few × 0.01</td>
<td>0.01</td>
<td>—</td>
<td>0.05</td>
<td>LHCb</td>
</tr>
<tr>
<td>A_{SL}^4</td>
<td>-5×10^{-4}</td>
<td>10^{-4}</td>
<td>$(5.8 ± 3.4) \times 10^{-3}$</td>
<td>10^{-3}</td>
<td>LHCb</td>
</tr>
<tr>
<td>A_{SL}^8</td>
<td>2×10^{-5}</td>
<td>< 10^{-5}</td>
<td>$(1.6 ± 8.5) \times 10^{-3}$</td>
<td>10^{-3}</td>
<td>LHCb</td>
</tr>
<tr>
<td>$A_{CP}(B \to \phi\gamma)$</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>$-0.012 ± 0.028$</td>
<td>0.005</td>
<td>Super-B</td>
</tr>
<tr>
<td>$B(B \to \tau\nu)$</td>
<td>1×10^{-4}</td>
<td>20% → 5%$_{\text{Latt}}$</td>
<td>$(1.73 ± 0.35) \times 10^{-4}$</td>
<td>5%</td>
<td>Super-B</td>
</tr>
<tr>
<td>$B(B \to \mu\nu)$</td>
<td>4×10^{-7}</td>
<td>20% → 5%$_{\text{Latt}}$</td>
<td>< 1.3×10^{-6}</td>
<td>6%</td>
<td>Super-B</td>
</tr>
<tr>
<td>$B(B_s \to \mu^+\mu^-)$</td>
<td>3×10^{-9}</td>
<td>20% → 5%$_{\text{Latt}}$</td>
<td>< 5×10^{-8}</td>
<td>10%</td>
<td>LHCb</td>
</tr>
<tr>
<td>$B(B_d \to \mu^+\mu^-)$</td>
<td>1×10^{-10}</td>
<td>20% → 5%$_{\text{Latt}}$</td>
<td>< 1.5×10^{-8}</td>
<td>[?]</td>
<td>LHCb</td>
</tr>
<tr>
<td>$A_{FB}(B \to K^+\mu^+\mu^-)_{\Sigma}$</td>
<td>0</td>
<td>0.05</td>
<td>$(0.2 ± 0.2)$</td>
<td>0.05</td>
<td>LHCb</td>
</tr>
<tr>
<td>$B \to K\nu\nu$</td>
<td>4×10^{-6}</td>
<td>20% → 10%$_{\text{Latt}}$</td>
<td>< 1.4×10^{-5}</td>
<td>20%</td>
<td>Super-B</td>
</tr>
<tr>
<td>$</td>
<td>q/P_D</td>
<td>$ missing</td>
<td>1</td>
<td>< 10^{-3}</td>
<td>$(0.80^{+0.18}_{-0.15})$</td>
</tr>
<tr>
<td>ϕ_D</td>
<td>0</td>
<td>< 10^{-3}</td>
<td>$(0.6^{+0.3}_{-0.5})$</td>
<td>2°</td>
<td>Super-B</td>
</tr>
<tr>
<td>$B(K^+ \to \pi^+\nu\nu)$</td>
<td>8.5×10^{-11}</td>
<td>8%</td>
<td>$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$</td>
<td>10%</td>
<td>K factory</td>
</tr>
<tr>
<td>$B(K^+ \to \pi^0\nu\nu)$</td>
<td>2.6×10^{-11}</td>
<td>10%</td>
<td>< 2.6×10^{-8}</td>
<td>[?]</td>
<td>K factory</td>
</tr>
<tr>
<td>$R(\phi/\psi)(K \to \pi\nu\nu)$</td>
<td>2.477×10^{-5}</td>
<td>0.04%</td>
<td>$(2.498 ± 0.014) \times 10^{-5}$</td>
<td>0.1%</td>
<td>K factory</td>
</tr>
<tr>
<td>$B(t \to c\ell\gamma)$</td>
<td>$\mathcal{O}(10^{-13})$</td>
<td>$\mathcal{O}(10^{-13})$</td>
<td>< 0.6×10^{-2}</td>
<td>$\mathcal{O}(10^{-5})$</td>
<td>LHCb (100 fb^{-1})</td>
</tr>
</tbody>
</table>

Belle II and LHCb

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Belle</th>
<th>Belle II</th>
<th>Belle II</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>~0.5ab⁻¹</td>
<td>5ab⁻¹</td>
<td>50ab⁻¹</td>
<td>10fb⁻¹ [5yrs]</td>
<td></td>
</tr>
<tr>
<td>(\Delta S(\phi K_S))</td>
<td>0.22</td>
<td>0.073</td>
<td>0.029</td>
<td>0.14</td>
</tr>
<tr>
<td>(\Delta S(\eta'K_S))</td>
<td>0.11</td>
<td>0.038</td>
<td>0.020</td>
<td>–</td>
</tr>
<tr>
<td>(\phi_s \text{ from } S(J/\psi\phi))</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.01</td>
</tr>
<tr>
<td>(S(K^*\gamma))</td>
<td>0.36</td>
<td>0.12</td>
<td>0.03</td>
<td>–</td>
</tr>
<tr>
<td>(S(\rho\gamma))</td>
<td>0.68</td>
<td>0.22</td>
<td>0.08</td>
<td>–</td>
</tr>
<tr>
<td>(\Delta Br/Br(B\to\tau\nu))</td>
<td>3.5σ</td>
<td>10%</td>
<td>3%</td>
<td>–</td>
</tr>
<tr>
<td>(Bs\to\mu\mu)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>5σ @ 6 fb⁻¹</td>
</tr>
<tr>
<td>(\tau\to\mu\mu [x10^{-9}])</td>
<td><45</td>
<td><30</td>
<td><8</td>
<td>–</td>
</tr>
<tr>
<td>(\tau\to\mu\mu\mu [x10^{-9}])</td>
<td><209</td>
<td><10</td>
<td><1</td>
<td>–</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>11°</td>
<td>2°</td>
<td>1°</td>
<td>4.5°</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>16°</td>
<td>6°</td>
<td>2°</td>
<td>2.4°</td>
</tr>
</tbody>
</table>

- **Belle II and LHCb complementarily elucidate a NP.**
 - The Belle II can provide important physics relevant to the modes with \(\gamma, \pi^0, \nu, K_S^0, etc\ldots\) \((B\to\tau\nu, b\to sq\bar{q}, \tau \text{ LFV})...\).