Gamma gamma physics at Belle

Z. Q. Liu (劉 智青)

On behalf of Belle Collaboration

zqliu@ihep.ac.cn

\((g-2)_\mu\): Quo vadis, 9th April, Mainz
KEKB and Belle

- Asymmetric $e^+ e^-$ collider
 8 GeV e^- (HER) x 3.5 GeV e^+ (LER)
 $\sqrt{s} = 10.58$ GeV $\Leftrightarrow \Upsilon(4S)$
 Beam crossing angle: 22 mrad

- Continuous injection

- Luminosity
 $L_{\text{max}} = 2.1 \times 10^{34}$ cm$^{-2}$s$^{-1}$
 World record!

High momentum/energy resolutions
CDC+Solenoid, CsI
Vertex measurement – Si strips
Particle identification
TOF, Si-aerogel, CDC-dE/dx,
RPC for K_L/muon
Running >10 years
Integrated luminosity of B factories

All can be used for $\gamma\gamma$ study!

- >1 ab$^{-1}$
 - On resonance:
 - $\Upsilon(5S)$: 121 fb$^{-1}$
 - $\Upsilon(4S)$: 711 fb$^{-1}$
 - $\Upsilon(3S)$: 3 fb$^{-1}$
 - $\Upsilon(2S)$: 25 fb$^{-1}$
 - $\Upsilon(1S)$: 6 fb$^{-1}$
 - Off resonance/scan:
 - ~100 fb$^{-1}$

- ~550 fb$^{-1}$
 - On resonance:
 - $\Upsilon(4S)$: 433 fb$^{-1}$
 - $\Upsilon(3S)$: 30 fb$^{-1}$
 - $\Upsilon(2S)$: 14 fb$^{-1}$
 - Off resonance:
 - ~54 fb$^{-1}$
Hadron/QCD physics

\(\gamma^*\gamma^*\) interaction in an \(e^+e^-\) Collider

1. Quasi-real photons: both \(\gamma^*\) have small \(Q^2\), \(Q^2<<W_{\gamma\gamma}^2\), \(Q^2<<E_{QCD}^2\), non-tag method, characteristic \(|\Sigma Pt^*|\) distribution.

- Hunt new hadrons, study hadron structure, test pQCD...

\(\Gamma_{\gamma\gamma}^*\text{Br}(\gamma\gamma\rightarrow f)\) or \(\gamma\gamma\rightarrow f\) cross section, \(\gamma\gamma\) coupling constant, provide info. of hadron structure.

Quantum number constraint: \(Q=0, C=+, J^P=0^+, 0^-, 2^+, 2^-\) ...

2. High virtuality: large \(Q^2\), double-tag (\(\gamma^*\gamma^*\)) or single-tag method (\(\gamma^*\)).

- Form factor measurement: \(\pi^0\)
- Test pQCD...
Hadron physics with quasi-real photons
Observation of $\chi_{c2}(2P)$

1. Potential model: $M[\chi_{c2}(2P)] \sim 3.9-4.0$ GeV, decay to DD, $J^{PC}=2^{++}$
2. Lum=395 fb$^{-1}$ @ Belle, $\gamma\gamma \rightarrow$ DD process
3. $M(Z(3930)) = 3929 \pm 5 \pm 2$ MeV/c^2; $\Gamma(Z(3930)) = 29 \pm 10 \pm 2$ MeV; $\Gamma_{\gamma\gamma} \times Br(Z(3930) \rightarrow DD) = 0.18 \pm 0.05 \pm 0.03$ keV
Observation of $\chi_{c2}(2P)$

1. Scatter angle distribution of final D meson; favor Spin-2 option
2. It should be the $\chi_{c2}(2P)$

$\chi_{c2}(2P)$

$J^G(J^{PC}) = 0^+(2^{++})$

Mass $m = 3927.2 \pm 2.6$ MeV
Full width $\Gamma = 24 \pm 6$ MeV

Confirmed by BaBar, mass & width agree with Belle

BaBar, $L = 384$ fb$^{-1}$
PRD81,092003(2010)
χ_{c0}(2P) candidate

1. Belle $\gamma\gamma \rightarrow \omega J/\psi$ process using “zero-tag” events.

2. Observe a structure near 3.9 GeV, $X(3915)$ significance 7.7σ

3. Mass=$(3915\pm3\pm2)$ MeV, width=$(17\pm10\pm3)$ MeV

4. Candidate for $\chi_{c0}(2P)$
1. Confirmed by BaBar: $M=3919.4 \pm 2.2 \pm 1.6$ MeV; Width=$(13 \pm 6 \pm 3)$ MeV
2. Further angular analysis supports $J^{PC}=0^{++}$
3. Belle: $\Gamma_{\gamma\gamma} \cdot Br(X(3915) \rightarrow \omega J/\psi)=(61 \pm 17 \pm 8)$ eV; BaBar=$(52 \pm 10 \pm 3)$ eV
4. If one assume $\Gamma_{\gamma\gamma} <\text{keV}$, $Br[X(3915) \rightarrow \omega J/\psi]$~(1-6)%
\[\gamma \gamma \rightarrow \omega \phi, \phi \phi, \omega \omega \]

- \(\gamma \gamma \rightarrow VV \): “golden” channel \(\rightarrow \) 4-quark hadron
- VV pair well “glued” to \(\gamma \gamma \) system,
- Models: MIT bag... (Sov. Phys. Usp. 34,1991)
- Example: \(\gamma \gamma \rightarrow \rho^+\rho^-, \rho^0\rho^0, K^+K^- ... \) (L3 & ARGUS)
- Enhancements near \(\rho^0\rho^0 \) threshold, but not \(\rho^+\rho^- \)?

1. Un-tag method
2. Signal events: \(|\Sigma P_t^*|\)
 (vector sum) \(\sim 0 \)
3. Fit \(|\Sigma P_t^*|\) distribution \(\rightarrow \)
 signal events yield
4. Background estimated through \(\omega/\phi \) sideband

![Graph showing data, good fit, and background fit with 870 fb⁻¹ data points]
1. (a) $\omega\phi$ (b) $\phi\phi$ (c) $\omega\omega$ mass spectrum in two-photon process.

2. Background is estimated from sideband, i.e. 4K, 6π…

3. Obvious enhancement below $2.8\text{GeV}/c^2$

4. Charmonia is observed significantly in $\phi\phi$ mode.
Spin-Parity results for $M(VV)<2.8\text{GeV}/c^2$

Angle definition:

1. Five kinematically independent angles: $\cos\theta$, $\cos\theta^*$, $\cos\theta^{**}$, ϕ^*, ϕ^{**}

2. Transversity angle: $\phi_T = |\phi^* + \phi^{**}|$; Polar-angle product: $\Pi_\theta = (\sin\theta^*)^2 \times (\sin\theta^{**})^2$

3. (a)4x4 (b)5x5 (c)10x10 bins. Fig (a) shows Π_θ distribution in each ϕ_T bin, i.e. Π_θ distribution while $\phi_T \in [0.0.25)$ for first 4 bins and similarity for others.

4. Fit 2-D angle distribution $f(\phi_T, \Pi_\theta)$ to extract different J^P components.

(a). 0^+ S-Wave or 2^+ S-Wave

(b). 0^+ S-Wave and 2^- P-Wave

(c). 0^+ S-Wave and $2^+ S$-Wave
Cross section measurement

1. (a) $\omega\phi$ (b) $\phi\phi$ (c) $\omega\omega$ cross section together with different J^P component contribution.

2. Efficiency is got through MC simulation and re-weighed according to mass dependent spin-parity analysis result.

3. Sys. error would be (a)15% (b)11% (c)13%

4. Power law (W^{-n}) fit for high energy region:

 $n=7.2\pm 0.6(a), 8.4\pm1.1(b), 9.1\pm0.6(c)$.

Charmonium results

1. Clear η_c, χ_{c0} and χ_{c2} signal in (b)$\phi\phi$ mode and first evidence for (c)$\eta_c \rightarrow \omega\omega$.

2. Measurement of $\Gamma_{\gamma\gamma} * Br(VV)$

TABLE II: Results of $\Gamma_{\gamma\gamma} B(X \rightarrow VV)$ (eV) for η_c, χ_{c0} and χ_{c2}.

<table>
<thead>
<tr>
<th>mode</th>
<th>$\omega\phi$</th>
<th>$\phi\phi$</th>
<th>$\omega\omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_c</td>
<td>< 0.49</td>
<td>$7.75 \pm 0.66 \pm 0.62$</td>
<td>$8.67 \pm 2.86 \pm 0.96$</td>
</tr>
<tr>
<td>χ_{c0}</td>
<td>< 0.34</td>
<td>$1.72 \pm 0.33 \pm 0.14$</td>
<td>< 3.9</td>
</tr>
<tr>
<td>χ_{c2}</td>
<td>< 0.04</td>
<td>$0.62 \pm 0.07 \pm 0.05$</td>
<td>< 0.64</td>
</tr>
</tbody>
</table>

Belle, PRL108, 232001(2012)
\[\gamma \gamma \rightarrow PP' \]

Angular dependence

\[\sigma(\pi^0 \pi^0)/\sigma(\pi^+ \pi^-) \]

Energy dependence

\[\sigma(\eta \pi^0)/\sigma(\pi^0 \pi^0) \]

Cross-section ratio

\[d\sigma/d|\cos \theta^*| = a(\sin^{-4} \theta^* + b \cos^2 \theta^*). \]

Difference of the slopes

\[\sigma \sim W^{-n} \]
Form factor measurement with single-tag events
π^0 Transition Form Factor (TFF) by BaBar

- Coupling of neutral pion with two photons
- Good test for QCD at high Q^2 ($\to \infty$):
 \[Q^2 F(Q^2) = \sqrt{2} f_\pi \approx 0.185 \, \text{GeV} \]
- π^0 transition form factor (TFF) measured by BaBar
- Larger than the asymptotic pQCD prediction above $Q^2 > 10 \text{GeV}^2$

Below $Q^2 < 8 \text{GeV}^2$, the BaBar result supports the CLEO result.

- η and η' TFFs from BaBar [PRD 84, 052001(2011)] are consistent with pQCD predictions.
- Understand this situation for the π^0 TFF’s within standard QCD calculations is difficult
- Suggest New Physics beyond standard QCD!
π^0 Transition Form Factor (TFF)

- Single-tag π^0 production in two-photon process with a large-Q^2 and a small-Q^2 photon

\[
|F(Q^2)|^2 = \lim_{Q_2^2 \to 0} |F(Q^2, Q_2^2)|^2
\]

- Detect e^+/e^- (tag side) and π^0

$Q^2 = 2EE'(1 - \cos \theta)$ from energy and polar angle of the tagged electron

Event Generator:

2. EPA (equivalent photon approximation) \rightarrow TFF measurement
Extraction of π^0 Yield

- Int. Luminosity: 759 fb$^{-1}$
- Fit $M(\gamma\gamma)$ distribution in each Q^2 bin
- Double Gaussian (for signal)
 + 2nd-order Polynomial (for background)

Belle
PRD 86, 092007 (2012)
Background contamination in signal is estimated by the $\pi^0\pi^0$ background MC which is normalized to the observation, as 2%
1. Cross sections from p-tag and e-tag are combined

2. No rapid growth above $Q^2 > 9\text{GeV}^2$ ($\sim 2.3\sigma$ difference between Belle and BaBar in $9 - 20 \text{GeV}^2$)

3. Fit with an asymptotic parameter

$$Q^2 |F(Q^2)| = BQ^2/(Q^2+C)$$

$$B = 0.209 \pm 0.016 \text{ GeV}$$

Consistent with QCD prediction (0.185 GeV).
Summary

• Using non-tag two photon events, Belle study hadron spectrum, including charmonium, light hadrons.
• Using single-tag two photon events, Belle has measured the π^0 transition form factor.

Thank you (谢谢)!
Efficiency for the Signal Process at Belle

The trigger efficiency is defined for the acceptance after the selection.

Up-down structures in the efficiencies are due to complicated Bhabha-veto trigger condition.